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Segmentation of subcortical brain structures using fuzzy templates
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We propose a novel method to automatically segment subcortical

structures of human brain in magnetic resonance images by using

fuzzy templates. A set of fuzzy templates of the structures based on

features such as intensity, spatial location, and relative spatial

relationship among structures are first created from a set of training

images by defining the fuzzy membership functions and by fusing the

information of features. Segmentation is performed by registering the

fuzzy templates of the structures on the test image and then by fusing

them with the tissue maps of the test image. The final decision is taken

in order to optimize the certainty in the intensity, location, relative

position, and tissue content of the structure. Our method does not

require specific expert definition of each structure or manual

interactions during segmentation process. The technique is demon-

strated with the segmentation of five structures: thalamus, putamen,

caudate, hippocampus, and amygdala; the performance of the present

method is comparable with previous techniques.

D 2005 Elsevier Inc. All rights reserved.

Introduction

Magnetic resonance imaging (MRI) is able to provide a detailed

information of normal and diseased anatomy for medical research

and has become a significant imaging modality in clinical

diagnosis and treatment planning. Segmentation of subcortical

structures from MR brain scans is a critical task that has numerous

applications such as quantitative morphometry, 3D volume visual-

ization, mapping brain structures and functions, and clinical

investigations including pathology, diagnosis, therapy, surgery

planning, etc. Manual segmentation is time-consuming, subjective,

and error prone; inter- or intra-observer variability may reduce the

ability to detect subtle differences during comparisons. Moreover,

the growing size and number of MR images have necessitated the

use of computers to facilitate automatic segmentation (Pham et al.,

2000; Sonka and Fitzpatrick, 2000).

There are a few main issues that should be addressed by any

automatic subcortical structure segmentation technique. The

inhomogeneous intensity within one tissue class or structure and
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the overlapping intensity characteristics among different structures

may reduce the effectiveness of intensity-based methods (Raja-

pakse et al., 1997). Although the spatial information can be

incorporated to solve the inherent ambiguities of class intensity

distributions, due to the complexity and variability of the shape,

size, and orientation, accurate identification of brain anatomical

structures is a challenging task. Other issues such as low contrast,

noise perturbation, partial volume effect, and scanner magnetic

field inhomogeneities of MR images should also be addressed

(Sonka and Fitzpatrick, 2000; Xue et al., 2000).

A wide variety of methods have been proposed in the literature

for segmentation of subcortical structures (Pham et al., 2000).

Deformable models, which deform a template based on the

extracted image features, have been extensively studied and widely

used in medical image segmentation with promising results (Sonka

and Fitzpatrick, 2000). However, it relies on human experts for

initialization and guidance, and intelligent optimization algorithms

are required to automate the approach. Prior knowledge such as

atlases is helpful to the segmentation process, so elastic image

registration techniques based on atlases were proposed to identify

brain structures (Kelemen et al., 1999). However, the accuracy of

registration mechanism largely influences the segmentation per-

formance. Bayesian approach has been applied to detect a number

of neuroanatomical structures (Fischl et al., 2002). A set of

manually labeled training images is used to create probabilistic

prior maps of the structure of interests by a linear registration to the

atlas and a test image is segmented by the maximum a posterior

(MAP) estimation based on some assumptions. Knowledge-based

approaches such as fuzzy modeling (Xue et al., 2000) and

information fusion (Barra and Boire, 2001) have also been

adopted. Hybrid techniques were also proposed to further increase

the accuracy of detection, such as maximum a posterior estimation

of structures with level set prior information (Yang et al., 2004),

combining fuzzy clustering technique with deformable models for

thalamus segmentation (Amini et al., 2004), and fitting a group of

deformable templates supervised by a series of rules derived from

analyzing the template’s dynamics and expert knowledge (Pitiot et

al., 2004). Shape descriptors such as moments of 3D coordinates

are recently proposed to characterize brain structure morphometry

(Mangin et al., 2004). Other approaches include histogram analysis

(Worth et al., 1998), neural network techniques (Magnotta et al.,

1999), and genetic algorithms (Sonka et al., 1996). Despite all

http://www.sciencedirect.com
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these efforts, due to the unavailability of efficient and accurate

automatic segmentation methods that are suitable for clinical use,

clinicians still rely on manual segmentation of subcortical brain

structures from MR images. There is a need to further investigate

into novel techniques that can automatically detect the subcortical

structures more accurately.

We approach the problem of segmentation of subcortical

structures by (1) incorporating the spatial information of

structures as intensity is not enough for reliable estimation of

structures, (2) taking into consideration the predictable spatial

relationships among structures although individual variability

exists in terms of shape, orientation, and location of the

structures, and (3) using a set of training images to obtain prior

information of each structure of interest in the form of fuzzy

templates as the information provided by the test image and a

single rigid template is incapable of handling the individual

variability of the structures.

The expert knowledge such as ‘‘the putamen was defined as a

gray matter prismatic-shaped structure, located approximately at 25

mm of the lateral ventricles, almost symmetric with respect to the

inter-hemispheric plane and slightly posterior to the frontal horn of

the lateral ventricles’’ may be useful for the segmentation of a

certain structure (Barra and Boire, 2001). But this kind of expert

definition of brain subcortical structure may be vague, different

experts may come out with slightly different definitions; some

parameters like ‘‘25 mm’’ may not be suitable for a different group

of subjects. Therefore, the present approach does not require expert

definitions, instead, it automatically extracts the prior knowledge

of the target structure from a set of manually segmented training

images and encodes them into fuzzy templates. On the other hand,

atlas-based approaches usually represent the prior knowledge by a

rigid template, which cannot take into account the variability of

individual anatomy. As a result, we are motivated to use fuzzy

logic to model anatomical variability and demonstrate that fuzzy

templates would be a useful way to represent prior knowledge

about subcortical structures.

In order to manage the imprecision and the uncertainty inherent

in the structures, fuzzy templates of different subcortical structures

in terms of different features such as intensity, spatial location,

relative distance, and relative direction are first created and fused

based on a set of training images under the fuzzy logic framework.

The fuzzy templates are then used as the prior knowledge for

segmentation by nonlinearly registering with the test image.

Secondly, the tissue information of the test image is fused together

with the fuzzy templates to form a fuzzy map of different

structures. A defuzzyfication step with a-cut on fuzzy maps is

finally used to clearly identify the location and boundary of

subcortical structures. Experiments with the detection of five

subcortical structures: thalamus, caudate, putamen, hippocampus,

and amygdala, on 17 images are presented; the results were

compared with previous approaches.
Method

The first step in our method is to construct fuzzy templates from

the features of each structure; a set of training images normalized

to a standard template is used for this purpose. Fuzzy maps of each

structure for the test image are then created by registering and

fusing the fuzzy templates with the tissue maps of the test image.

The final detection is made by a defuzzyfication step.
Construction of fuzzy templates

Suppose that there is a standard template r = (ri: i Z B) of

human brain B, where ri is the image intensity at the voxel site i

of the template r. We have a set of N real value 3D MR brain

images, F = { f j: j = 1, 2, . . . N} along with their expert

segmentations to learn the fuzzy templates of the structures. The

j th training image is denoted by f j = ( f i
j: i Z I) where f i

j is the

image intensity of the voxel i in the image f j and I ˛ N3 is the

set of coordinates of the voxels in the domain of image f j.

Suppose that the expert segmentation identifies L number of

structures indexed by the set C = {1, 2, . . . L} from each image;

the labeled image (expert segmentation) corresponding to the

image f j is denoted by s j = (si
j = l: i Z I, l Z C), where the

voxel site i in image f j belongs to the structure l.

Normalization

In order to construct fuzzy templates based on a set of training

images, we need to normalize all training images F = { f j: j = 1, 2,

. . . N} to a standard template r to create a set of normalized images

F̃ = {f̃ j: j = 1, 2, . . . N}, which standardizes all brain scans to same

size and orientation under the same coordinate system. We apply

12-parameters affine transformation followed by nonlinear warping

for normalization (Ashburner and Friston, 1999). The optimal 12

parameters for registration can be computed by Gauss–Newton

optimization algorithm as described in Friston et al. (1995).

Nonlinear warping based on a linear combination of discrete

cosine transform (DCT) basis functions is applied to correct gross

differences in head shapes. This optimization is extended to

maximum a posterior (MAP) solution to incorporate the prior

knowledge for regularization (Ashburner et al., 1997). The same

transformation computed from normalizing training images f j to

the template r is applied to each image’s expert segmentation s j to

obtain a set of normalized segmented images s̃ j = (s̃ i
j = l: i Z I,

l Z C) where j = 1, 2, . . . N.

Fuzzy feature maps

For each pair of normalized segmentation s̃ j and normalized image

f̃ j, there areL groups of voxels that belong to different structures lZC.

Let us denote the set of voxels belonging to the structure l in the

normalized image f̃ j asGj
l = (i: s̃ i

j = l, iZ I). For each structure lZC,

three fuzzy feature maps for each image f̃ j Z F̃ are created:

Intensity. We model the structure l in the normalized training

image f̃ j as a fuzzy set based on its intensity characteristics and

its fuzzy membership function is directly estimated from the

intensity histogram of Gj
l. Then, an intensity fuzzy map for the

structure l corresponding to the normalized training image f̃ j is

created. For every voxel i in the normalized training image f̃ j,

the fuzzy membership Aij
l for structure l is calculated from

normalized training image f̃ j and segmentation s̃ j as follows:

Al
i j ¼

H I i; l; jð Þ�H I
min

l; jð Þ
2 H I

max l; jð Þ�HI
min

l; jð Þð Þ þ 0:5 if s̃s
j
i ¼ l;

0 otherwise;

8<
:

where HI (i, l, j) represents the number of voxels in Gj
l having

the same intensity as voxel i in image f̃ j; Hmin
I (l, j) = mini H

I (i,

l, j) and Hmax
I (l, j) = max i H

I (i, l, j) stand for the minimum

and maximum number of voxels having the same intensity in Gj
l,

respectively. Thus, for voxels belonging to Gj
l, its intensity fuzzy



J. Zhou, J.C. Rajapakse / NeuroImage 28 (2005) 915–924 917
membership is in the range [0.5, 1] depending on its value in the

histogram, otherwise zero fuzzy membership value is assigned.

The above fuzzy membership function is designed to differentiate

largely between those voxels belonging to this structure and other

voxels, and to give higher fuzzy memberships to more prominent

voxels and lower values to less prominent ones based on the

intensity distribution of a particular structure.

Spatial location. Suppose xi j, yi j, and zi j stand for the voxel i’s

spatial location in the normalized image f̃ j as from left to right,

from posterior to anterior, from inferior to superior. The spatial

location of structure l in f̃ j can be modeled by a three-dimensional

fuzzy map based on histograms of x, y, and z values for all voxels

in the structure. Similar to the intensity fuzzy membership

function, spatial location fuzzy membership functions in one

direction D is defined as:

B Dð Þli j ¼
H D i; l; jð Þ�H D

min
l; jð Þ

2 H D
max l; jð Þ�H D

min
l; jð Þð Þ þ 0:5 if s̃s

j
i ¼ l;

0 otherwise;

8<
:

where D Z {x, y, z} stands for the three directions, HD (i, l, j) is

the number of voxels in Gj
l having the same spatial location value

in the direction D as voxel i in image f̃ j, Hmin
D (l, j) = min i H

D (i,

l, j), and Hmax
D (l, j) = maxi H

D (i, l, j). The combination of these

three fuzzy memberships produces a value of each voxel i in the

spatial location fuzzy map of each structure l in each image f˜ j as:

Bl
i j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B xð Þli j B yð Þli j B zð Þli j

3

q
ð3Þ

Relative spatial relations. Since the topological information of

subcortical structures in human brain is important and predictable,

relative spatial relations between structure Gj
l, l Z C and other

structures Gj
lV, lV(m l ) Z C in jth normalized training image can be

expressed in terms of a relative spatial relation fuzzy map based on

relative distance C(dis)ij
llV and relative direction C(dir)ij

llV with respect
to some structures. Again, the fuzzy memberships are estimated

from the distance and direction histograms. Let dij
lV = ||i � oj

lV|| stand
for the distance between voxel i in image f̃ j and oj

lV which is the

centroid of the structure lV in image f̃ j. The relative distance fuzzy

map is given by:

C disð Þll Vij ¼
H dis dl V

ij
; l V; l; jð Þ�H dis

min
l V; l; jð Þ

2 Hdis
max l V; l; jð Þ�Hdis

min
l V; l; jð Þð Þ þ 0:5 if s̃s

j
i ¼ l;

0 otherwise;

(
ð4Þ

where H dis (dij
lV, lV, l, j) is number of voxels in Gj

l having same

distance dij
lV to the centroid oj

lV of structure lV in image f̃ j from voxel

i; Hmin
dis (lV, l, j) and Hmax

dis (lV, l, j) denote the minimum and

maximum number of voxels in Gj
l with the same distance to centroid

oj
lV of structure lV in image f̃ j, respectively.

As defined above, there are three directions x, y, and z, in a 3D

MR image. A vector is formed from the centroid of one structure oj
l’

to certain voxel i in image f̃ j and its direction in three-dimensional

space can be decided by three angles with xy plane (z = 0), xz plane

( y = 0), and yz plane (x = 0), respectively as:

a xyð Þll Vij ¼ arcsin
i�o l V

jð Þ4 0 0 1ð Þ
jj i�o l V

j
jj

� �
180
p if s̃s

j
i ¼ l;

0 otherwise;

8<
: ð5Þ
a yzð ÞllVij ¼ arcsin
i�o l V

jð Þ4 1 0 0ð Þ
jji�o l V

j
jj

� �
180
p if s̃s

j
i ¼ l;

0 otherwise;

8<
: ð6Þ

a xzð Þll Vij ¼ arcsin
i�o l V

jð Þ4 0 1 0ð Þ
jji�o l V

j
jj

� �
180
p if s̃s

j
i ¼ l;

0 otherwise;

8<
: ð7Þ

where * indicates the inner product of the two vectors. The range of

the above angles are [�90, 90] and the direction fuzzy memberships

of each voxel i in image f̃ j is given by

C dirð Þll Vij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
w¼fx y; y z; x zg

C wð Þll Vij3

s
ð8Þ

where the form of the fuzzy membership function is same for three

angles, w Z {xy, yz, xz} as below:

C wð Þll Vi j ¼
H w a wð Þll Vi j ; l; l V; jð Þ�H

w
min

l; l V; jð Þ
2 H

w
max l; l V; jð Þ�H

w
min

l; l V; jð Þð Þ þ 0:5 if s̃s
j
i ¼ l;

0 otherwise;

(
ð9Þ

where H w (a(w)i j
ll V, l, l V, j ) is the number of voxels inGj

l having the

same angle a(w)i j
llV as voxel i to centroid oj

lV of structure l V with
respect to direction w in image f̃ j; Hmin

w (l, lV, j) = mini H
w (a(w)i j

llV,
l, lV, j) and Hmax

w (l, lV, j) = maxi H
w(a(w)ij

llV, l, lV, j).
After obtaining fuzzy maps C(dis)ij

ll V (relative distance) and

C(dir)ij
llV (relative direction) for structure l with respect to every

other structure lV in f̃ j, a total relative spatial relations fuzzy map

can be fused in two steps. For each voxel i in f̃ j, we first combine

relative distance and relative direction for structure l with respect to

one structure lV, and then fuse over all reference structures lV, (lV m
l ), to produce a new fuzzy membership Cij

l. T-norm fusion operator

is used since an overlap of information is desired.

C ll V
i j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C disð Þll Vi j 4C dirð Þll Vi j

q
ð10Þ

C l
i j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
l V¼ 1; l Vm l

C ll V
i j

L� 1

s
ð11Þ

In this way, every training image will have three fuzzy maps for

each structure l Z C based on intensity, spatial location, and relative

spatial relations: Aij
l, Bij

l, and Cij
l where i Z I and j = 1, 2, . . .N. Note

that the final fuzzy membership of each voxel in every fuzzy map

should be in the range [0.5, 1] for true belonging. In this way, we can

differentiate the true voxels from the others more accurately for each

structure in each image and better prepare the maps for the next

fusion step to create the fuzzy templates of the structures.

Information fusion

Three kinds of features– intensity A, spatial location B, and

relative spatial relations C –have been modeled by fuzzy member-

ship functions for each training image. The fuzzy feature maps of

all training images are fused to obtain fuzzy feature templates and a

total fuzzy template involving all features for different structures.

A simple mean fusion operator is used to produce average fuzzy

memberships of structure l for each voxel i Z I, across all training

images:

W l
i ¼ 1

N

XN
j¼1

W l
i j ð12Þ
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whereW = {A, B, C } represents intensity, spatial location, and relative

spatial relations, respectively. As a result, three fuzzy feature templates

Al = (Ai
l: i Z I ), Bl = (Bi

l: i Z I ), and C l = (Ci
l: i Z I ) were

constructed for each structure of interests l Z C. Further, information

fusion is possible to form a total fuzzy template T l = (Ti
l: i Z I ) to

include all three fuzzy features as:

T l
i ¼

�
Al
i 4B

l
i

�0:5

4C l
i

! 0:5

ð13Þ

We first combine intensity and spatial locations, and then with

relative spatial relations. The reason for doing this two-step fusion

is to first consider overlapped information based on intensity and

location of all voxels belonging to structure l itself. Then, secondly,

relative spatial relations feature template, which is based on spatial

location of voxels both in structure l and other structures, is fused

to further refine the information of structure l accurately.

Segmentation

A three-steps scheme is described below to segment a given test

image f into different structures l Z C based on the fuzzy

templates Al, Bl, C l, and T l constructed using the training images.

Registration

In order to make use of the fuzzy templates created during

training, the fuzzy membership information must be made

available to each voxel in the test image f. Registration from the

fuzzy templates to the test image is done by using the same method

as in the training stage but in the reverse direction. As a result, all

voxels in the test image f have prior fuzzy memberships to

structure l Z C based on the registered fuzzy features denoted as

Ãi
l for intensity, B̃ i

l for spatial location, C̃ i
l for relative spatial

relation, and T̃ i
l for total information.

Incorporation of tissue information

The brain matter can be broadly classified into gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF). Differ-

ent subcortical structures have different tissue properties, which

information is proved to be useful for segmentation (Barra and

Boire, 2001). Therefore, fuzzy maps of three tissue classes k Z

{GM, WM, CSF} are constructed to grasp more unique properties

of different structures in the test image f such as shape, size, and

orientation, which may not be handled satisfactorily by the

registered fuzzy templates only.

There are many approaches for tissue segmentation and we used

the approach proposed by (Ashburner and Friston, 1997). It is an

extension of a clustering algorithm, the maximum likelihood mixture

model algorithm, by incorporating a prior spatial probability map of

belonging to each tissue type and a correction of image intensity

nonuniformity by using a Bayesian model. The process starts by

estimating probabilities of each tissue class based on a priori map and

then iteratively computes cluster parameters, belonging probabilities,

and sensitivity fields from intensity corrected images until a

convergence criterion is satisfied (Ashburner and Friston, 1997,

2000). It uses a mixture of Gaussian functions to model the

probability distribution of three tissue classes, which can be seen as

fuzzy membership functions with Gaussian shapes. Therefore, the

final probabilities of belonging of each voxel to a particular tissue

class produced by this segmentation algorithm can be treated as fuzzy

membership values.
Until now, two kinds of information are available for

segmentation purpose: one is the prior knowledge of intensity,

spatial location, and relative spatial relations of one structure l,

rendered by the registered fuzzy templates Ã l, B̃ l and T̃ l; the

other one is from the tissue segmentation of the test image itself

denoted by P = (Pi
k: i Z I, k = {GM, WM, CSF}), where Pi

k

stands for the probability of belonging to tissue class k and its

value is in the range [0, 1]. Since the total fuzzy template T̃ l

consists of all information in three feature templates, combining it

with the tissue data P is an effective way to produce a more

accurate fuzzy membership map of structure l in the test image f.

T-norm fusion operator is applied as follows:

K l
i ¼

ffiffiffiffiffiffiffiffiffiffiffi
T̃T l

i P
k
i

q
if structure l contains tissue type k: ð14Þ

where Ki
l is the fuzzy membership value giving the degree of

belongingness of voxel i to the structure l.

Detection of the structures

Decision or defuzzyficaton is required to decide on the

belongingness of each voxel i to structure l in the test image f.

For each voxel i, we find the structure l* with maximum fuzzy

membership among all structures of interests l Z C, then assign

zero fuzzy membership value to all other structures l(m l*) for this

voxel to avoid overlapping.

I f l4 ¼ argmax
laC

Kl
i then let Kl

i ¼ 0 for l m l4: ð15Þ

We apply a simple a-cut thresholding technique to this final

fuzzy map K as follows: Voxel i in image f belongs to structure

class l if

Kl
i 	 nl; ð16Þ

where the threshold nl is automatically learned from all training

images of structure l. The resulting group of voxels belonging to

structure l is the surest group satisfying all the information above.

In other words, structure l has been identified from test image f

based on intensity, spatial location, relative spatial relations to the

other structures, and tissue information.

Determination of the threshold

This section describes the procedure of determining the

threshold nl in Eq. (16) for detecting the structure l from a given

test image f . Suppose a fuzzy template T l was created from the

set F of N training images in order to identify structure l . During

training, an optimal threshold nl
j for detecting the structure l in

each training image f j is learned by using the combined fuzzy

map K l j = (Ki
l j: i Z I , j = 1, 2, . . . N ); the optimal threshold is

then chosen in such a manner that the target structure is detected

from the training image to have the highest mean of the volume

difference and overlap indices by using the known manual

segmentation as the ground truth. Each training image produces

one optimal threshold, resulting in a set of thresholds {nl
j: l Z

C, j = 1, 2, . . . N}. The confidence value of each threshold nl
j is

noted by weights wl
j = (I1l

j + I2 l
j ) / 2. As I1 defined in Eq. (17)

and I2 defined in Eq. (18) are both in the range [0, 1], the

confidence weights {wl
j: l Z C, j = 1, 2, . . . N } are in the same

range as well. The threshold nl for detecting the structure l in a

given test image f is determined by taking a weighted average of



Fig. 1. Fuzzy feature maps of left thalamus on axial slice (z = 155) in one

representative training image: (a) intensity fuzzy map; (b) spatial location

fuzzy map; and (c) relative spatial relations fuzzy map. The color bar

represents fuzzy membership range, in which the upper end represents one

and the bottom end represents zero.
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the set of thresholds, nl
j , obtained for the training images, with

their corresponding confidence weights, wl
j .
Experimental results

Data

In our experiments, the MR brain images and their manual

segmentations were obtained from the Center for Morphometric

Analysis at Massachusetts General Hospital (IBSR, 2004). There

are 18 images in this data set; one image was identified to have

relatively large ventricle system and hence was removed from our

analysis. Each of 17 T1-weighted volumetric images is composed

of 128 coronal slices of 1.5 mm thick with 256 
 256 matrix per

slice; voxel size is 0.94 
 0.94 
 1.5 mm3. According to their

documentation, these images have been positionally normalized

into the Talairach coordinates (rotation only) and corrected for

bias fields.

The standard reference template r for training image normal-

ization is the single subject MRI anatomical brain template provided

by International Consortium for Brain Mapping (ICBM, 2004). It

has 362 coronal slices of 0.5 mm thick with 304 
 309 matrix per

slice and a voxel size is 0.5 
 0.5 
 0.5 mm3. Since our method is
Fig. 2. Relative spatial relations fuzzy maps of left thalamus on axial slice (z = 155)

is relative direction fuzzy maps. They are calculated relative to (a) right thalamus; (

The same color bar measure was used as in Fig. 1.
voxel-based, this standard template provides a reference template or

coordinate system to create fuzzy feature maps and to combine

several features together for total fuzzy template.

Quantitative indices for validation

Three quantitative measures were used to evaluate the perform-

ance of our segmentation algorithm with reference to the expert

segmentations (Iosifescu et al., 1997; Kelemen et al., 1999; Barra

and Boire, 2001). Suppose that the true labeling of a structure l is

denoted by lt, the labeling produced by a segmentation algorithm is

lc, and the function V (l) returns the volume or the number of

voxels in the structure labeled l.

1. Percent volume difference is computed from the relative error in

volume estimation when the true volume is given by the expert as:

I1 ¼ 1� jV l tð Þ � V lcð Þ j
V l tð Þ ð17Þ

2. Percent overlap or spatial accuracy assesses the relative

overlapping of the computed structure lc and the true one lt as:

I2 ¼
V lt 7 lcð Þ
V l tð Þ ð18Þ

3. Mean distance measures the absolute distance (in millimeters)

of the computed structure to the true one, defined as:

I3 ¼
P
calc

min ta lt jjc� tjj

V lcð Þ; ð19Þ

where c represents a voxel in the detected structure lc, and t

represents a voxel in the true structure lt; ||c � t|| stands for the

distance between two voxels.

Perfect matching between the computed volume and true

volume is achieved when the first two indices equal to one and

the mean distance measure equals to zero. Note that some

published results use the average volume of the predicted and

manually labeling (Xue et al., 2000; Fischl et al., 2002) or the

union of these two (Amini et al., 2004) as a normalization factor as

opposed to manual labeling volume used here.
in one training image. First row is relative distance fuzzy maps; second row

b) left caudate; (c) left putamen; (d) left hippocampus; and (e) left amygdala.



Fig. 3. Total fuzzy templates for 10 structures of interests: (a) thalamus, (b) putamen, (c) caudate, (d) hippocampus, and (e) amygdala. First row is structures

in left brain and second row is structures in right brain. Thalamus (axial slice z = 155); putamen (axial slice z = 136); caudate (sagittal slice x = 177 for left

and x = 122 for right); hippocampus (coronal slice y = 184); amygdala (axial slice z = 103). The color bar represents fuzzy membership range, in which the

top end represents one and the bottom represents zero.

Table 1

Quantitative evaluation of the segmentation of subcortical structures: best-

case, worst-case, and average over 17 subjects

Structure Index Left Right

Best Worst Mean Best Worst Mean

Caudate I1 0.99 0.71 0.91 T 0.07 0.88 0.85 0.90 T 0.07

I2 0.80 0.82 0.81 T 0.06 0.89 0.64 0.80 T 0.08

I3 0.25 0.50 0.31 T 0.11 0.26 0.55 0.32 T 0.11

Putamen I1 0.98 0.72 0.91 T 0.08 0.99 0.87 0.91 T 0.08

I2 0.90 0.87 0.84 T 0.06 0.84 0.68 0.81 T 0.06

I3 0.13 0.57 0.25 T 0.12 0.20 0.35 0.33 T 0.12

Thalamus I1 0.95 0.88 0.95 T 0.03 0.98 0.99 0.95 T 0.03

I2 0.89 0.75 0.83 T 0.05 0.88 0.69 0.84 T 0.06

I3 0.23 0.22 0.32 T 0.17 0.19 0.82 0.32 T 0.19

Hippocampus I1 0.95 0.85 0.89 T 0.09 0.95 0.89 0.88 T 0.07

I2 0.86 0.60 0.72 T 0.11 0.77 0.43 0.70 T 0.11

I3 0.23 1.17 0.55 T 0.27 0.37 1.21 0.56 T 0.24

Amygdala I1 0.99 0.79 0.81 T 0.17 0.99 0.76 0.78 T 0.20

I2 0.72 0.36 0.66 T 0.15 0.73 0.41 0.64 T 0.15

I3 0.23 1.08 0.63 T 0.25 0.39 1.03 0.70 T 0.22

I1—percent volume difference, I2—percent volume overlap, and I3—mean

distance for segmentation (mm); the best and worst cases were decided by

the maximum and minimum values of the sum I1 + I2, respectively.
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Creating fuzzy templates

In this section, the procedure of creating fuzzy templates as

described in Construction of fuzzy templates is demonstrated with a

set of training images. The whole process is in 3D, but some 2D

slices are shown for illustration purposes. In this step, different fuzzy

feature maps of structure l based on a single training image fj are

first calculated. For example, Fig. 1 presents (a) the intensity fuzzy

map Aj
l, (b) the spatial location fuzzy map Bj

l, and (c) relative spatial

relations fuzzy map Cj
l of structure l (left thalamus) for a

representative training image fj.

For creating relative spatial relations fuzzy map Cj
l as shown

in Fig. 1(c), five reference structures are chosen for each target

structure, which includes four other structures on the same side of

the brain and the same target structure in the opposite side of the

brain. For instance, if we want to obtain relative spatial relations

fuzzy feature map about left thalamus, the corresponding

reference structures are putamen, caudate, hippocampus, and

amygdala in left brain and thalamus in right brain. Relative

spatial relations are computed in terms of relative direction and

relative distance. Fig. 2 shows relative distance (first row) and

relative direction (second row) fuzzy maps with respect to five

reference structures for structure l (left thalamus) in one

representative training image. These fuzzy maps will be

combined together by Eqs. (8)– (11) to form one fuzzy map

representing relative spatial relations of left thalamus Cj
l for the

training image f j. Other nine structures follow exactly the same

procedure to produce fuzzy maps.

After that, the fuzzy feature maps of all the training images are

fused together to create a total fuzzy template of subcortical

structures by Eqs. (12) and (13). Fig. 3 presents total fuzzy templates

T l, l Z C, for 10 structures including thalamus, putamen, caudate,

hippocampus, and amygdala (both left and right).

Segmenting subcortical structures

In the fuzzy template of a certain structure, every voxel has a

fuzzy membership representing its degree of belongingness to

this structure. This kind of prior knowledge is used in the
segmentation step as described in Segmentation, and is fused with

gray matter tissue fuzzy map since all five structures of interests

contain gray matter tissue class. The final combined fuzzy map is

able to roughly delineate the target structure. The decision is

made to accurately identify the structure by first computing the

structure with maximum belongingness for each voxel and then

retaining voxels having a membership superior to a certain

threshold nl
test in the combined fuzzy map of structure l for the

test image. The thresholding is done in three-dimensional space,

and a technique to remove unconnected voxels is applied for final

decision. As described in Determination of the threshold, the

threshold for identifying structure l from the test image was

automatically learned during the detection of structure l from all

the training images.
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Cross-validation

In order to validate our approach, leave-one-out (LOO) cross-

validation method was used on the data set of 17 images. In each

round, the fuzzy templates were obtained by training 16 images

and then tested on the left-out image. The results are evaluated by

comparing to the manual segmentation in terms of three indices

described in Quantitative indices for validation. Table 1 illustrates

the best, worst, and average segmentation results for all 17 images

in terms of three indices for 10 structures—thalamus, putamen,

caudate, hippocampus, and amygdala (both left and right) detected

by the present approach. Fig. 4 illustrates the best and worst

segmentation results of all 10 structures on one brain slice by

overlapping true volume and predicted volume together. Note that

the experts did the manual segmentation in coronal slices, so the

manual segmentation has smooth edges in coronal slices but

chaotic edges in axial and sagittal slices. Because only selected

slice is shown, some connected part of the structure may seem as

unconnected.

A tradeoff between the indices I1 and I2 is observed; in other

words, as the predicted volume is increasing, the percent volume
Fig. 4. Best and worst segmentation results with reference to manual segmentat

(axial); (c) thalamus (axial); (d) hippocampus (coronal); and (e) amygdala (corona

brain, while columns (iii) and (iv) show best and worst results for the structures in r

the predicted volume overlapped.
difference index I1 and percent volume overlap index I2 keep

increasing, but when the predicted volume is larger than the true

volume, I1 starts to decrease. Different structures have different

intensity, shape, size, and orientation variance. Therefore, the

threshold learned from the training stage may not be the optimal

one for the test image. Satisfying performance was achieved for

thalamus, putamen, and caudate with very low mean distance error,

which is less than 0.5 mm on average. This indicates that volume

estimation is very consistent with respect to the expert quantifi-

cation and there is a good match between expert segmentation and

our segmentation results. Hippocampus and amygdala are rather

small subcortical structures with large individual variations, so the

segmentation accuracy still require improvement although the

mean distance index was less than 1 mm in most cases.

Fig. 5 compares the present segmentation results in terms of

average accuracy for all 10 structures with the approach presented

by Iosifescu et al. (1997) using same indices (I1, I2, and I3).

Although the images used are different, we can still make some

comparisons to see the potential of the present method. Their

approach uses an elastic registration algorithm to a MRI brain atlas

based on a single subject (Kikinis et al., 1996), but our method
ion for 10 structures on selected slices: (a) caudate (sagittal); (b) putamen

l). Columns (i) and (ii) show best and worst results for the structures in left

ight brain. The overlapped volume indicates where both the true volume and
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creates fuzzy templates from a set of training images. We have

comparable performance for thalamus and better accuracy for

putamen and caudate. In particular, the volume overlap index is

much higher, so the significance of the use of the fuzzy templates is

demonstrated. Furthermore, our approach could reasonably detect

structures like amygdala and hippocampus. Our results for hippo-

campus are comparable to results of individual image shown in by

Kelemen et al. (1999), where no average results are given.

The method of Barra and Boire (2001), though based on a similar

framework using fuzzy maps for the segmentation as ours, treats

each structure individually by doing different fusion steps with

reference to expert definitions. Similarly, in Barra et al. (2001), same

framework is applied to segment subthalamic nucleus (ST).

However, they first segmented the third ventricle (V3) and the two

read nucleus (RN), and then identified subthalamic nucleus (ST)

based on these neighboring structures by using topological

information provided by expert and tissue information from the

image. This procedure largely depends on whether the previous two

neighboring structures are accurately identified. Moreover, some

parameters in their expert definitions such as ‘‘25 mm’’ between two

structures are quite vague and not general enough for other group of

subjects. In short, we took an holistic approach for the detection of

subcortical structures, in which all interested structures are detected

simultaneously; dependence on previous segmentation is not

required. However, an individualistic approach, such as Barra and

Boire (2001), may turn out to be more accurate for volume overlap

measure for one group of subjects for a particular structure, but may
Fig. 5. Performance comparison of the present approach and the approach of Ios

putamen, RP—right putamen, LC—left caudate, RC—right caudate, LH—left

amygdala.
not be accurate, in general, on other groups. Therefore, an objective

comparison of our method with their approach is inappropriate.

Registration artifacts

In our approach, registration step plays an important role in

both training and testing. In order to evaluate the accuracy of the

nonlinear registration algorithm and its effect to the performance of

our approach, an experiment was designed involving the following

two steps: (1) register a test image f and its expert segmentation s

to a standard template r, say by transform H V, to obtain the

normalized segmented images s̃ = H V(s); (2) register the same

standard template r back to the test image by another trans-

formation: r = H( f ), and apply it to s̃ to get ˜̃ss̃ss ¼ H s̃sð Þ.
If the nonlinear registration algorithm is able to perfectly match

the target image f and the template r, different anatomical parts of

the brain should be aligned accordingly although sampling errors

still exist, in other words, ˜̃ss̃ss approximates s nicely for each structure

l. However, usually this may not be the case because of large

individual variability and registration deformations. Therefore, for

each structure of interest l, by comparing the expert segmentation

sl with the processed segmentation ˜̃ss̃ssl , registration accuracy can be

evaluated in terms of volume difference, volume overlap, and mean

distance error as shown in Table 2. The registration error can be

seen in terms of low volume difference, low volume overlap, and

high mean distance error. Note that this registration error includes

twice of the normalization step. The above process emulates the
ifescu et al. (1997). Key: LT—left thalamus, RT—right thalamus, LP—left

hippocampus, RH—right hippocampus, LA—left amygdala, RA—right



Table 2

Quantitative evaluation of the registration effect on subcortical structures

averaged over 17 subjects: I1—percent volume difference, I2—percent

volume overlap, I3—mean distance, and I3
r/s—percentage of registration

mean distance error divided by segmentation mean distance error

Structure I1 I2 I3 (mm) I3
r /s (%)

Caudate (L) 0.64 T 0.07 0.53 T 0.06 0.22 T 0.19 70.9

Caudate (R) 0.65 T 0.08 0.54 T 0.07 0.23 T 0.22 71.8

Putamen (L) 0.75 T 0.08 0.63 T 0.07 0.21 T 0.11 84.0

Putamen (R) 0.74 T 0.07 0.61 T 0.06 0.25 T 0.13 75.7

Thalamus (L) 0.76 T 0.08 0.69 T 0.06 0.14 T 0.11 43.8

Thalamus (R) 0.75 T 0.08 0.68 T 0.05 0.13 T 0.12 40.6

Hippocampus (L) 0.63 T 0.08 0.51 T 0.09 0.25 T 0.13 45.4

Hippocampus (R) 0.62 T 0.07 0.49 T 0.08 0.30 T 0.16 53.5

Amygdala (L) 0.66 T 0.09 0.47 T 0.09 0.40 T 0.18 63.4

Amygdala (R) 0.68 T 0.08 0.46 T 0.09 0.49 T 0.21 70.0
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normalization procedure involved in the training and testing stage

of our method, so the errors and the information lost in the

registration step influence our segmentation performance.

Because of this registration artifact, a simple mapping from a

crisp segmented template to the target image does not satisfy for

segmenting subcortical structure. The fuzzy templates in our

approach encode the necessary anatomical information in a 3D

fuzzy membership distribution, hence is able to adapt to the target

image and identify the structure of interest better than crisp

template after registration. Despite this, the registration still

contributes to a significant amount of the segmentation error as

shown in the fourth column I3
r/s of Table 2. The highest ratios

occurred in detecting putamen (84.0% (L) and 75.7% (R)) and the

lowest in thalamus (43.8% (L) and 40.6% (R)). The higher ratios

reflect that the correct identification of particular structures relies

more heavily on the registration procedure. Despite the heavy

dependence on the registration procedure, the overall accuracies of

the detection of subcortical structures from our algorithm were

acceptable. However, more intelligent registration algorithms

creating more accurate fuzzy templates of these structures and

enhancing the fuzzy templates’ ability to adopt to a particular

image will certainly improve the accuracy of our approach.

Further, because of the nonlinear transformation used in the

registration procedure, some voxels that belong to one structure in

the original manual segmentation are seen as outliers on the final

registered version of this structure. A connected component

technique was used in our approach to remove such unconnected

voxels in each structure as a post-processing step to registration.
Discussion and conclusion

A novel method for the segmentation of brain subcortical

structures was presented, which constructs fuzzy templates for

different structures based on the information extracted from a set of

training images. Important features such as intensity, spatial

location, and relative spatial relations were considered and fused

together. Fuzzy templates are registered to a given test image and

further fused with its tissue information to produce fuzzy

memberships of different structures. The final fuzzy maps

successfully segment thalamus, putamen, caudate, hippocampus,

and amygdala in 17 T1-weighted MR images. Our method showed

comparable or better results compared to the previous approaches
as evidenced by the quantitative measures: percent volume

difference, percent volume overlap, and mean distance.

The method is based on a holistic framework involving intensity,

spatial location, relative spatial relations, and tissue features, and no

specific expert definitions of structures or interventions during the

process are required because the prior knowledge was automatically

extracted from the training data. The fuzziness of the maps captures

the variability of each structure in the group of test images; several

fuzzy feature templates and new information from the test image

itself can be incorporated nicely. Hence, it is possible to generalize

our approach to other structures or to other image data.

There are also some limitations of our method. The segmentation

performance of one test image depends on the prior knowledge of

the fuzzy template derived from training images. Because intensity,

spatial location, and relative spatial relations vary among different

group of subjects, and may change during development. For

instance, intensity may change with age-dependent iron accumu-

lation or myelination, spatial localization may vary with gender or

other variables, and relative spatial relations may change during

development. Hence, it is necessary to consider the population under

study and the training images should be a good representation of the

population. Moreover, according the experiment illustrated in

Registration artifacts, registration step plays an important role both

in training and testing stage of our approach. Any improvements of

the registration could enhance the fuzzy template’s ability to adapt to

a particular image and improve the accuracy of our technique.

In this experiment, we demonstrated the segmentation of only

five subcortical structures (left and right). For calculating relative

spatial relations fuzzy template of one structure, we chose to

assign four other structures on the same side and the same

structure in opposite side of the brain as the reference structures.

However, certain structure may not have reference structures in

all directions, and this affects the accuracy of relative spatial

relations fuzzy template. Further work may be necessary to

include more representative structures in different directions as

reference structures in order to increase the sensitivity of relative

spatial relations fuzzy templates at the expense of the computa-

tion cost. Our method extracts tissue information from the test

image and incorporates it with the prior knowledge to achieve

high sensitive fuzzy map for segmentation. But certain sub-

cortical structure like thalamus has diffuse gray level intensity,

which makes the tissue segmentation inaccurate. A more

intelligent tissue segmentation will enhance system performance

(Rajapakse and Kruggel, 1998). Future work can extract more

useful information, besides the tissue type information, from the

test image itself to detect each subject’s own uniqueness and

subtle shape changes. Here, fuzzy templates are created based on

T1-weighted images only. Multiple channel images include more

than one MRI property of tissues, so it is possible to enhance

discriminating power by incorporating new information, such as

tissue or intensity fuzzy memberships, from other multi-spectral

images (Rajapakse et al., 1996). As seen in the experiments, the

accuracy of our segmentation approach could be greatly

enhanced by improving the registration technique.
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