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Probabilistic Framework for Brain Connectivity
From Functional MR Images
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Abstract—This paper unifies our earlier work on detection of
brain activation (Rajapakse and Piyaratna, 2001) and connectivity
(Rajapakse and Zhou, 2007) in a probabilistic framework for an-
alyzing effective connectivity among activated brain regions from
functional magnetic resonance imaging (fMRI) data. Interactions
among brain regions are expressed by a dynamic Bayesian net-
work (DBN) while contextual dependencies within functional im-
ages are formulated by a Markov random field. The approach si-
multaneously considers both the detection of brain activation and
the estimation of effective connectivity and does not require a priori
model of connectivity. Experimental results show that the present
approach outperforms earlier fMRI analysis techniques on syn-
thetic functional images and robustly derives brain connectivity
from real fMRI data.

Index Terms—Conditional random fields, dynamic Bayesian
networks (DBNs), effective connectivity, functional magnetic
resonance imaging (fMRI), graphical models, Markov random
field (MRF).

I. INTRODUCTION

I N RECENT years, there has been increasing interest in
using rapid developments of medical imaging in the study

of human brain function. In particular, functional magnetic
resonance imaging (fMRI) has become a popular technique
for noninvasively locating brain functions under various cog-
nitive and behavioral tasks. Functional brain studies acquire
a time-series of brain scans while the subject is alternatively
performing an experimental task and a baseline task. Brain
regions of interest are then detected through measuring the
oxygenation level variations in blood vessels near the neurons
activated by the input stimulus, i.e., the blood oxygenation level
dependent (BOLD) contrast. The detection of brain activation
provides functional maps showing which brain regions are
specialized for specific sensory or cognitive functions.

More recently, functional integration studies describing how
functionally specialized areas interact and how these interac-
tions lead the brain to perform a specific task have attracted
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more and more attention in human brain research [5], [9], [11],
[13], [22], [32], [34]. In fMRI experiments, the BOLD signal
(or the hemodynamic response) changes resulted from neural
activities are usually close to the noise level. Hence, it is im-
portant to develop analysis methods that can robustly detect ac-
tivated brain regions and derive functional connectivity from
noisy fMRI time-series. Given fMRI data, the significance of
activation can be assessed using various statistical models in-
cluding correlation analysis [1], -test or -test [10], and mix-
ture models [7], [33].

Besides local information measured at individual brain
voxels, the strategy to effectively fuse contextual dependencies
within functional imaging data is a key issue for the detection
of brain activation [14], [30], [33]. Because of the intercon-
nection within brain areas, the time-series of a brain voxel is
highly dependent on those of its neighbors. Spatial smoothing
or filtering can be used in the preprocessing of fMRI data to
enhance the overall signal-to-noise ratio (SNR) in activated
regions since neighboring sites are likely to belong to the same
class that is activated or nonactivated. The notion of Markov
random field (MRF) has also been introduced to encourage
contiguous results of activation detection by defining pairwise
potentials between neighboring activation (activated/inactive)
labels in a generative framework [6], [28], [29]. In these MRF
approaches, spatial regularization and activation detection are
simultaneously handled to enhance the performance of fMRI
data analysis. Recently, we introduced conditional random
fields (CRF) to take into account the conditional independen-
cies of observed fMRI data [34].

Numerous techniques have been proposed to use functional
imaging data to characterize effective connectivity of the brain,
i.e., the influence that one region exerts on another. Given brain
activation map, the activity of an activated region is represented
by the average of the time courses of hemodynamic responses
of the neurons in the brain region and the fMRI experiment
is represented by the dataset containing activities of all acti-
vated brain regions. The structural equation modeling (SEM) is
a commonly used method that analyzes the functional connec-
tivity among brain regions by finding the maximum likelihood
(ML) parameters of connectivity [22], [25], [31]. The informa-
tion about functional interactions is extracted by decomposing
interregional covariances among detected region activities. The
multivariate autoregressive (MAR) model characterizes effec-
tive connectivity by modeling particular brain regions as vari-
ables in a causal, dynamical, and linear system [11], [13]. Fully
connected models, in which every region is connected to every
other region, are usually used [5]. More recently, the dynamic
causal model (DCM) has been introduced to describe the func-
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tional interactions at the neuronal level [9], [26]. The DCM com-
prises of a bilinear model for neurodynamics and an extended
balloon model for hemodynamics. SEM, MAR, and DCM all
are confirmatory models in the sense that they usually require an
initial interaction model. The prior model is often under anatom-
ical constraints that are mainly obtained in the studies of ani-
mals. It is not always certain which areas to be included in the
study, especially for brain functions unique to human, such as
language and cognition. Moreover, the detection of brain acti-
vation and the analysis of effective connectivity are usually per-
formed as two separate processes; then, the error in activation
detection will further influence the accuracy of brain connec-
tivity analysis. From this point of view, it is relatively compre-
hensive to simultaneously consider activation detection and ef-
fective connectivity during the analysis of fMRI data.

On the other hand, graphical models provide a natural tool
for handing uncertainty and complexity through a general for-
malism for compact representation of joint probability distribu-
tion [17]. In particular, Bayesian networks (BN) and MRF at-
tract more and more interests in the study of brain functional
imaging [21], [34]. A technique based on BN was proposed to
derive effective connectivity of the brain from fMRI data in an
exploratory manner [35]. More recently, since BN does not re-
flect the temporal characteristics of image time-series, we pro-
posed dynamic Bayesian networks (DBN) to explicitly take into
account temporal characteristics in a stationary Markov chain
[32]. We have earlier shown that DBN are better suited for mod-
eling brain connectivity than BN [32]. This paper presents a
probabilistic framework based on DBN and MRF for learning
effective connectivity among activated brain regions from fMRI
data. The proposed method jointly estimates brain activation
and effective connectivity in a unified probabilistic framework.
The interactions among brain regions are modeled by DBN and
the contextual dependencies within functional imaging data are
formulated by MRF. The method relaxes the constraint of re-
quiring a prior connectivity model and effectively fuses con-
textual constraints within functional images. Experimental re-
sults show that the proposed method outperforms previous fMRI
analysis methods with synthetic functional data and robustly de-
rives brain connectivity from real fMRI data.

The rest of the paper is arranged as follows. Section II
presents the probabilistic framework for the modeling of ef-
fective connectivity from functional imaging data. Section III
describes the implementation details. Section IV discusses
the experimental results. Then, our technique is concluded in
Section V.

II. METHOD

In an fMRI experiment of a specific sensory or cognitive task,
consider a neural system consisting of a set of activated brain
regions that are capable of collectively performing the partic-
ular task. For a pixel (or voxel) within a 2-D (or 3-D) image
scan, the observed data and activation label (i.e., activated or
not) of the site are denoted by and respectively. Here,

, and is the spatial domain of the scene. The obser-
vation consists of measured activity (or BOLD signal) at the
site . For a fMRI time-series from total image scans, the

observation is expressed as . The
label equals zero if point is inactive, or
it assigns site to one of activated regions (or classes) com-
posing the neural system. The entire activation pattern and ob-
served data over the scene are compactly expressed as

and , respectively. The ac-
tivity of an activated brain region is represented by the average
of the time-series responses of the region, which is denoted as

for the th region. The region activi-
ties for the entire neural system are compactly expressed by the
set of activated regions as . The influence
that the th region exerts on the th region is denoted by , and
the set for effective connectivity among all the activated regions
is represented by .

Given brain imaging data , we hope to jointly estimate the
activation labels , region activities , and effective connec-
tivity for the neural system. To simplify the computation, it
is assumed that the activation pattern is independent of the ef-
fective connectivity and the effective connectivity can be de-
rived from region activities. The joint posterior probability is
estimated as

(1)

where and , respectively, are the prior probabilities
of effective connectivity and activation pattern, is the
conditional probability of region activities given the effective
connectivity, and is the data likelihood given activa-
tion labels and region activities.

The probability reflects the prior information for the ef-
fective connectivity among brain regions. To prevent the trivial
solution of a fully connected network, the prior probability of
functional connectivity is expressed as

(2)

where

is the Kronecker delta function, and is the strength of ef-
fective connectivity from the th region to the th region. The
prior probability will become small with increasing number of
nonzero connections. Thus, sparsity of functional interactions
among brain regions is encouraged.

The prior probability of the activation pattern is formu-
lated by a MRF to model contextual dependencies among acti-
vation labels. Here, the conditional distribution of an activation
label at site is totally determined by the labels from its neigh-
borhood, that is, , where
denotes the neighborhood of the point (e.g., see Fig. 1). Using
the Hammersley–Clifford theorem and considering up to pair-
wise potentials [2], [28], [29], the prior probability is given
by a Gibbs distribution with the following form:

(3)
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Fig. 1. (a) The 8-pixel neighborhood. (b) The 6-voxel neighborhood.

The one-pixel potential reflects the prior knowledge
of different label classes. The prior information of individual
classes can be expressed by the following one-pixel potential,

(4)

The smaller is, the more likely a site will be labeled as
the th class. Meanwhile, the two-pixel potential
models the contextual (or pairwise) constraint between neigh-
boring sites. Since the regions of interest usually consist of a
number of contiguous brain voxels, the connectivity constraint
is imposed by the following pairwise potential to encourage con-
tiguous activation pattern:

(5)

The pairwise smoothness constraint is imposed only when the
two activation labels are different. Thus, neighboring pixels are
more likely to belong to the same class than to different classes.

The conditional probability measures how well the
estimated effective connectivity fits the obtained region activi-
ties of the neural system. The interactions among activated re-
gions are represented by a BN [16], [35], in which each brain
region has a set of parents that will directly impact on its activity.
Using the chain rule of probability, the posterior of region activ-
ities for the neural system can be given by a compact Bayesian
network representation

(6)

where is the set of regions that directly impact on the th re-
gion, , and . The form of
brain connectivity is specified by linear regression that describes
how the activity in one region is related to the activities of other
regions via a set of path coefficients. In a DBN, the connectivity
is considered at each time instant in a transition network mod-
eled as a BN (see Fig. 2). With the stationary assumption, the
transition network is unfolded into a DBN representing the ef-
fective connectivity among the regions. At each time instant ,
the conditional probability is assumed to be normal

(7)

Fig. 2. Illustration of the network of DBN representing a neural system with
five activated regions: the nodes represent activities of the regions; the strengths
of the links characterize interactions among the regions. Two layers represent
adjacent scans.

where is the variance of system noises. The system noise
at region is given by . This is a
linear general model of connectivity among the regions, cor-
rupted by Gaussian noise. The linear and Gaussian assump-
tions seem valid as the results in our experiments with synthetic
and real fMR image data are convincing. The Gaussian noise is
easily tractable in the Bayesian framework. Multinomial distri-
bution is preferred when modeling nonlinear connectivity in the
probabilistic framework [32].

Given the activation label, the local likelihood of the obser-
vation at a site is approximated by a Gaussian distribution cen-
tering at the corresponding region activity. Hence, the data like-
lihood is factorized as

(8)

where is the variance of observation noises (where the ob-
servation noise can be estimated as ).

Combing (1)–(8), the maximum a posteriori (MAP) estimate
of the effective connectivity, activation labels, and region activ-
ities become

(9)
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III. IMPLEMENTATION

A. Optimization

To directly estimate brain connectivity, activation labels, and
region activities by maximizing the joint posterior probability
in (9) is ultimately difficult. In this work, the optimization is
performed by iterating over the following two steps.

First, region activities are estimated given both activation pat-
tern and brain connectivity

(10)

Second, activation pattern and effective connectivity are esti-
mated given region activities

(11)

And, the MAP estimate becomes

(12a)

(12b)

Hence, the Bayesian MAP estimate can be obtained by opti-
mizing the following objective functions:

(13a)

(13b)

(13c)

where the set controls the sensitivity of activation detec-
tion, it is simply assumed that for all the activated re-
gions and for inactive points. Positive parameters and

, respectively, weigh the importance of contextual constraint
in functional images and interaction sparsity for functional con-
nectivity.

The optimization of the activation pattern is generally diffi-
cult due to the contextual interactions among neighboring sites.
Here, the mean field approximation scheme is employed to get

the suboptimal estimate of the activation pattern [20]. The mean
field algorithm suggests that when estimating the label mean at
a single site, the influence from neighboring sites can be approx-
imated by that of their means. Moreover, the Metropolis–Hast-
ings algorithm is employed to search the space of effective con-
nectivity [17], with the Bayesian information criterion (BIC) as
score function to find optimal connectivity model. Bayes Net
Toolbox is adopted for implementation.

B. Initialization and Parameters

The parameters and reflect the influences of prior in-
formation for brain activation and contextual constraint from
neighboring sites. The higher the value of , the more easily
activated regions will be detected. Meanwhile, the higher the
value of , the stronger contextual constraints are utilized. In
our experiments, it is found that and pro-
duce the visually optimal activation pattern for the analysis of
fMRI data. The parameter is set as , where is the size of
time-series. Thus, given the region activities, the effective con-
nectivity is estimated by the BIC

where is the number of nonzero
connections within the neural system.

Significantly activated regions are initialized by the pop-
ular statistical parametric mapping (SPM) software [10].
All the fMRI data are corrected for motion artifacts and spa-
tial smoothing is performed with a Gaussian filter of 6-mm
full-width at half-maximum (FHWM) using the SPM. In the
initialization, the activity of an activated region is extracted by
taking the average of the time-series responses in the region.
The region activity for inactive areas is set as zero. Noise
variances and are then estimated from the initialization.
The 24-pixel neighborhood for 2-D images and 124-voxel
neighborhood for three-dimensional images are utilized in this
work.

IV. RESULTS

The proposed algorithm was quantitatively tested on syn-
thetic functional imaging data. Real fMRI time-series gathered
on silent reading task were also employed for qualitative eval-
uation.

A. Synthetic Data

Synthetic fMRI data was generated to test the feasibility and
robustness of the proposed method for detecting the underlying
neural system. A neural system was simulated with synthetic
time-series where interactions among the brain regions are rep-
resented by a general linear model describing how activity of
one region is related to the activities of other regions with a set of
linear coefficients: , where
denotes the vector of region activities at time , and is the

1http://www.ai.mit.edu/murphyk/Software/BNT/
2http://www.fil.ion.ucl.ac.uk/spm/



RAJAPAKSE et al.: PROBABILISTIC FRAMEWORK FOR BRAIN CONNECTIVITY FROM FUNCTIONAL MR IMAGES 829

Fig. 3. Synthetic functional images with five activated regions: (a) the 30th
image scan, (b) the 60th image scan, and (c) the activation pattern. Central acti-
vation represents region 1 of the connectivity model in Fig. 2, the top-left acti-
vation region 2, the bottom-left activation region 3, the bottom-right activation
region 4, and the top-right activation region 5.

Fig. 4. Detected activation from synthetic functional image data by: (a) SPM
approach, (b) MRF approach, and (c) the proposed algorithm.

vector of zero mean Gaussian innovation. The nonzero elements
of the linear coefficient matrix for a five region synthetic net-
work are set to be

, and . The region activity was
taken from a normalized time-series from an activated brain
voxel in a real fMRI experiment (TR s, in each cycle the
stimulation lasted for 16 s and was followed by a resting period
of 16 s).

Gaussian variants were randomly generated to simulate the
rest region activities. Two-dimensional dataset of 96 scans with
64 64 pixels per image scan were generated by using the sim-
ulated region time-series. Region time-series were designed for
activated pixels, while inactive pixels remained unchanged over
time. Gaussian random noises were then added to the time-series
of both activated and inactive pixels. Pixel intensities of image
scans are shown in Fig. 3. The SNR is defined as the ratio of the
standard deviation of region activities over the standard devia-
tion of image noises.

Fig. 4 shows activation detection results by SPM, MRF
approach [34], and the proposed approach for the synthetic
functional data with five activated regions. The results are
similar in SPM and MRF approaches. Although most activated
points are detected by SPM and MRF approaches, details (or
high-frequency information) of activated regions are blurred.
As illustrated, the proposed approach generates relatively
accurate boundaries and contiguous results by simultaneously
performing activation detection and spatial regularization. By
incorporating contextual interactions, the accuracy of activation
detection is significantly improved by the proposed approach
for functional imaging data under noisy environments.

The detection results were also evaluated quantitatively by
comparing to the ground-truth image. Several synthetic datasets
were generated to simulate brain systems with different number

Fig. 5. Error rates of activation detection by the SPM approach, the MRF ap-
proach, and the proposed approach for synthetic functional image data with dif-
ferent number of regions.

Fig. 6. ROC curves of SPM, MRF, and the proposed approach initialized with
SPM and MRF.

of regions. The corresponding error rates (the portion of mis-
classified points over the activation regions) of the three algo-
rithms are shown in Fig. 5. Compared to the SPM and MRF tech-
niques, the proposed approach shows lower error rates. The cor-
responding receiver operating characteristic (ROC) curves for a
neural systems with five regions across three al-
gorithms are shown in Fig. 6.

Compared to SPM and MRF approaches, the proposed ap-
proaches show better performance. Initialization with MRF and
SPM gave similar results for the present approach. The substan-
tial increase of the detection accuracy accompanies enhanced
estimation of regional activities and effective connectivity.

The likelihood-ratio (LR) measure was used to assess the
matching between the learned structure and the known structure
of the effective connectivity. Given region activities, LR is de-
fined as the ratio of the likelihood of the estimated structure over
the likelihood of the known structure. The DBN approach [32]
was used to derive neural systems of synthetic datasets and com-
pared with the present technique. The affects of image noise,
the number of scans, and the number of regions on derivation of
brain connectivity were investigated.
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Fig. 7. The accuracy of the detection of connectivity at different noise levels
of time-series from activated brain regions.

Fig. 8. Likelihood ratio of effective connectivity found by the DBN approach
and the present method on synthetic functional images against different numbers
of interacting regions.

As seen, the accuracy of the detection of connectivity im-
proves with SNR while the present approach showed better
performance than DBN, as shown in Fig. 7. The LR values
against different numbers of brain regions at SNR value of
1.6 are plotted in Fig. 8. Both methods degrade in their per-
formances as the number of regions grows. This could be due
to the difficulty in finding the optimal connectivity pattern
in (11). Fig. 9 shows the effect on the number of scans. The
present method showed over 90% accuracy after 60 scans. As
seen, in all above scenarios, the present method shows better
performance than when activation detection and connectivity
analysis are done in two separate steps.

B. fMRI Data

The fMRI data gathered on silent reading task (from the fMRI
Data Center access number 2–2000–11189) was used to test
the proposed algorithm. In this experiment, for each subject 360
brain scans with 35 slices (64 64 35 voxels per scan) were
acquired using an EPI sequence (TR TE ms).
The experimental task involved alternative reading of words
and pseudo-words with variable presenting frequencies, and the

3http://www.fmridc.org

Fig. 9. Likelihood ratio of connectivity pattern by previous DBN approach and
the present method on synthetic functional images having different numbers of
scans.

resting condition involved fixating a cross in the middle of the
screen. Each trial lasted 21 s and was followed by a resting pe-
riod of 16 s. More details of the experiments can be found in
[24].

Figs. 10 and 11 show the results of activation detection
from fMRI data gathered on the silent reading task by the
proposed approach and SPM (the initialized pattern), respec-
tively. Expected activation in related brain regions including
bilateral ventral extrastriate cortex (VEC, BA 18/19), superior
parietal lobule, (SPL, BA 7), middle temporal cortex (MTC,
BA 21/22), inferior frontal gyrus (IFG, BA 44/45), and middle
frontal gyrus (MFG, BA 9/46) were found by both methods.
The present method is improved upon the detected activation
from the connectivity patterns. As seen from the figures, the
present method improved upon localization and significance of
activation from initially detected regions. In this experiment,
the regions of activation did not change over the iterations in
the connectivity analysis.

The step (10) is performed at individual level [34]. In order to
perform connectivity study at the group level in (11), the proba-
bilities of activations across subjects are averaged and the peak-
activated voxels are detected. The time-course representing each
significantly activated region is extracted by taking the eigen
time-series of a neighborhood (radius mm) surrounding
the peak-activated voxel. Two steps (10) and (11) are run itera-
tively until no change in connectivity is seen. Fig. 12 shows the
neural systems derived using the proposed approach and DBN
approach on the same silent reading task data. The structures
learned by both methods are largely similar and consistent with
the previous literature [34]. However, the proposed approach
seems to discover more important connections than DBN ap-
proach by simultaneously optimizing the detection of activation
and the estimation of connectivity.

The extrastriate cortex (EC: BA18, BA19) in the visual cortex
plays the important role of visual representation in word pro-
cessing [18]. The superior parietal lobe (SPL: BA7) plays the
role of visual analysis and mainly makes efferent connections
to the prefrontal cortex including middle frontal gyrus (MFG:
BA46, BA9) and inferior frontal gyrus (IFG: BA44, BA45), pro-
viding more elaborate information [18]. As seen, the functional
links among EC, SPL, and prefrontal cortex form the dorsal
visual pathway of language processing [23]. Both approaches
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Fig. 10. Detected brain activation from fMRI data of a representative subject performing the silent reading task by using the probabilistic framework.

Fig. 11. Detected brain activation from fMRI data of a representative subject performing the silent reading task by using SPM.

Fig. 12. Neural systems derived from fMRI data of the silent reading task using: (a) DBN method, and (b) the present method. A shaded square in the transition
diagram indicates the existence of a directed connection from a region in the row to a region in the column, with the connection strength indicated.

found one dorsal pathway
, but only the proposed iterative

approach found the dorsal pathway in the opposite hemisphere
and corresponding connections with prefrontal

cortex . Direct con-
nections between EC and prefrontal regions were also found

for semantic
decision and analysis [19]. In addition, a homologous inter-

hemispheric connection between the ECs of both sides (LEC
was found by both approaches, which may be due

to the transcallosal inferences between two hemispheres [23].
A homologous interhemispheric connection was also found
between the SPLs .

The middle temporal cortex (MTC: BA21, BA22) involved
in the model is the general association cortex that integrates
the input from the lower level auditory and visual areas for
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TABLE I
MEAN SQUARE ERRORS OF ESTIMATES OF REGIONAL ACTIVATIONS PREDICTED BY THE NETWORKS DERIVED

BY DBN AND PRESENT APPROACHES

retaining in the memory. The connections between EC and
MTC are associated with the retaining and recalling of words
from the memory [18]. The connection LEC was
found by both approaches while only the proposed iterative
approach found and
for memory retention [23], [27]. Middle temporal cortex
is supposed to have connections with LSPL for movement
control [12], which was
correctly found by the proposed approach but not by DBN
approach. The common connections between MTC and pre-
frontal cortex in the results of both approaches includes

,
and for semantic phonologic retrieval and
semantic processing [15]. Again, the proposed approach was
able to discover a new connection .

The MFG is involved in tasks that require executive control,
such as the selection of behavior based on short term memory
[19]. It receives inputs from the posterior parietal and superior
temporal sulci. The IFG is most active for phonemic decisions
and receives inputs from temporal lobes and parietal lobes [3],
[27]. As seen, except for the connections that have been men-
tioned above, there are interhemispheric connections between
the prefrontal regions ,
which may be involved in semantic processing during inner
speech. The connection was found by the
proposed approach but not by DBN approach. It has been earlier
reported in an experiment demanding semantic categorization
and subvocal rehearsal [4].

We used the goodness of fix index (GFI) [4] to measure the
overall model fit of the dataset, i.e., how the derived structure
matches with the data. A better fit was realized by the present
method than the DBN . Using the
linear model of connectivity, the activation (the average time-
series response) of one region was predicted from the activation
of the other activated regions, and thereby mean square errors
of estimates of regional activations were measured and given in
Table I. Reduced errors of estimates indicate the present method
better fit the data.

V. CONCLUSION

We proposed a probabilistic framework of deriving effective
connectivity among brain regions from fMRI data. Unlike ear-
lier approaches, both brain activation detection and effective
connectivity analysis are simultaneously considered in a unified
framework. We take a probabilistic approach based on graph-
ical models including dynamic Bayesian networks and Markov
random fields. Furthermore, the proposed method does not re-
quire a prior connectivity model to begin with. As seen in the
experiments, the present approach gives more refined activity

and connectivity patterns by jointly estimating both brain ac-
tivation and effective connectivity to enhance the accuracy of
fMRI analysis.

Experimental results show that the proposed approach out-
performs earlier methods with synthetic functional images and
robustly learns brain connectivity from real fMRI data. The con-
nectivity pattern derived on silent reading data was close to
the networks earlier derived by DBN, and better explained the
reading task. However, the present method demands more com-
putational resources and time for iterative improvement. In our
experiments, the algorithm converged in less than five iterations
because initial connectivity based on SPM activation seemed
close to the optimal pattern.

We presumed linearly connected networks; nonlinear models
of connectivity increases the complexity but might shed more
insight into brain connectivity. We assumed a stationary model
where the connectivity pattern remains unchanged during fMRI
experimentation. However, learning and habituation effects are
likely to exist during a typical fMRI experiment. How this re-
search is extended to handle such scenarios would be a future
direction of this research. Also, theoretical work into the effects
of the number of scans, the number of regions, and scanner and
hemodynamic noise on derivation of connectivity is worth pur-
suing.
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