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SUMMARY

During development, the healthy human brain
constructs a host of large-scale, distributed, func-
tion-critical neural networks. Neurodegenerative
diseases have been thought to target these systems,
but this hypothesis has not been systematically
tested in living humans. We used network-sensitive
neuroimaging methods to show that five different
neurodegenerative syndromes cause circumscribed
atrophy within five distinct, healthy, human intrinsic
functional connectivity networks. We further discov-
ered a direct link between intrinsic connectivity and
gray matter structure. Across healthy individuals,
nodes within each functional network exhibited
tightly correlated gray matter volumes. The findings
suggest that human neural networks can be defined
by synchronous baseline activity, a unified cortico-
trophic fate, and selective vulnerability to neurode-
generative illness. Future studies may clarify how
these complex systems are assembled during devel-
opment and undermined by disease.

INTRODUCTION

Recent functional magnetic resonance imaging (fMRI) advances

have helped researchers delineate the human brain’s intrinsic

functional network architecture (Fox and Raichle, 2007; Fox

et al., 2005; Fransson, 2005; Greicius et al., 2003; Seeley et al.,

2007). These studies have shown that, during task-free condi-

tions, correlated spontaneous activity occurs within spatially

distinct, functionally related groups of cortical and subcortical

regions (Beckmann et al., 2005; Seeley et al., 2007; Vincent

et al., 2007). As predicted by principles governing network-

based synaptic physiology (Bi and Poo, 1999; Katz and Shatz,

1996), regions with synchronous baseline activity feature direct

or indirect anatomical connections (Greicius et al., 2008; Seeley

et al., 2007; Vincent et al., 2007). Blood-oxygen-level-dependent

(BOLD) signal fluctuations within these intrinsic connectivity

networks (ICNs) occur at low frequencies (0.01–0.08 Hz), exist

in nonhuman primates, and continue during general anesthesia

and sleep, suggesting that ICNs cannot be explained by ongoing

conscious mentation alone (Fox and Raichle, 2007). On the other

hand, ICNs remain detectable during mental effort (Fransson,
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2006), and ICN strength and variation influence task perfor-

mance inside (Fox et al., 2007; Hesselmann et al., 2008) and

outside (Seeley et al., 2007) the scanner. How ICN patterns

and fluctuations relate to gray matter structure in health and

disease, however, remains unknown.

Neurodegenerative diseases cause progressive, incapacitat-

ing cognitive, behavioral, and motor dysfunction. Early on, mis-

folded disease proteins aggregate within small, selectively

vulnerable neuron populations that reside in specific brain

regions (Graveland et al., 1985; Hyman et al., 1984; Seeley

et al., 2006). Synapses falter, and damage spreads to new

regions, accompanied by worsening clinical deficits (Selkoe,

2002). Often, later-affected regions bear known anatomical

connections with the sites of earlier injury (Seeley et al., 2008a).

Based on neuropathology (Braak and Braak, 1991), neuroimag-

ing (Buckner et al., 2005; Greicius et al., 2004), and evidence

from transgenic animal models (Palop et al., 2007), some authors

have suggested that neurodegeneration may relate to neural

network dysfunction (Buckner et al., 2005; Palop et al., 2006).

In human spongiform encephalopathies, which cause rapidly

progressive dementia through conformational changes in mis-

folded prion protein, direct evidence supports disease propaga-

tion along transsynaptic connections (Scott et al., 1992). For all

other neurodegenerative diseases, limited human experimental

data support the ‘‘network degeneration hypothesis.’’ If demon-

strated as a class-wide phenomenon, however, this framework

would have major mechanistic significance, predicting that the

spatial patterning of disease relates to some structural, meta-

bolic, or physiological aspect of neural network biology. Confirm-

ing the network degeneration hypothesis would also have clinical

impact, stimulating development of new network-based diag-

nostic and disease-monitoring assays.

To test the network degeneration hypothesis in living humans,

we studied patients with five distinct neurodegenerative

syndromes and two healthy control groups (Figure 1). Only early

age-of-onset dementia syndromes were included, enabling us to

better match patient groups for age and other demographic vari-

ables (Table S1 available online). Patients were diagnosed with

Alzheimer’s disease (AD, n = 24), behavioral variant frontotempo-

ral dementia (bvFTD, n = 24), semantic dementia (SD, n = 24),

progressive nonfluent aphasia (PNFA, n = 13), or corticobasal

syndrome (CBS, n = 17), based on standard research criteria.

Diagnoses were made on clinical grounds; therefore, neuroimag-

ing and pathological data did not influence group membership.

To weight our analyses toward the distinctive, early-stage neuro-

anatomic features of each syndrome, we excluded patients with
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Figure 1. Study Design Schematic

Patient groups were compared to HC1 subjects to determine syndromic atrophy patterns. From these maps, distinct seed ROIs were extracted (see Table S2) and

used in functional (HC2) and structural (HC1) correlation analyses. These experiments determined the functional intrinsic connectivity networks (ICNs 1–5) and

structural covariance networks (SCNs 1–5) associated with each of the five syndrome-related seeds. ICN and SCN maps were then compared to all five syndromic

atrophy maps to derive GOF scores, which are summarized in Figure 5.
moderate or severe dementia (defined by Clinical Dementia

Rating [CDR] scale scores >1). After defining the patient groups,

we conducted a series of quantitative structural and functional

imaging analyses in patients and controls to test the hypothesis

that syndrome-associated regional degeneration patterns reflect

distinct human neural network architectures.

RESULTS

Each Neurodegenerative Syndrome Features a Distinct
Regional Vulnerability Pattern
First, we established each syndrome’s functional and anatomical

deficit profiles compared to 65 healthy, age-matched controls

(Table S1 and Figure 2A). A standard neuropsychological battery

was administered, and magnetic resonance (MR) voxel-based

morphometry (VBM) facilitated whole-brain statistical parametric

gray matter comparisons between each patient group and

controls. The findings replicated previous work, performed by

our group and others, on the five syndromes (Boccardi et al.,

2005; Gorno-Tempini et al., 2004; Josephs et al., 2006, 2008;

Seeley et al., 2005, 2008a). In summary, AD was associated

with episodic memory dysfunction and prominent medial

temporal, posterior cingulate/precuneus, and lateral temporo-

parietal atrophy. bvFTD, SD, and PNFA, which together make
up the clinical frontotemporal dementia (FTD) spectrum, each

showed a unique deficit signature. bvFTD featured prominent

behavioral deficits with anterior cingulate, frontoinsular, striatal,

and frontopolar degeneration. SD resulted in loss of word and

object meaning accompanied by left-predominant temporal

pole (Tpole) and subgenual cingulate involvement. PNFA pre-

sented with nonfluent, effortful, and agrammatic speech and

was associated with left frontal operculum, dorsal anterior insula,

and precentral gyrus atrophy. Patients with CBS had prominent,

asymmetric sensorimotor impairment, with akinesia, rigidity,

apraxia, and cortical sensory loss or other cortical cognitive defi-

cits; accordingly, CBS gray matter loss was confined to dorsal

frontoparietal sensorimotor association areas, primary motor

and sensory cortices, and dorsal insula. The early-stage,

syndrome-specific anatomical patterns provided seed regions

for our subsequent network analyses in healthy controls (HCs).

Syndromic Atrophy Foci Anchor Large-Scale Functional
Networks in the Healthy Brain
The network degeneration hypothesis predicts that syndromic

atrophy patterns should recapitulate healthy functional network

architectures. To evaluate this possibility, we identified the

most atrophied cortical region in each patient group (Figure 2A,

Table S2) and used these regions of interest (ROIs) to seed ICN
Neuron 62, 42–52, April 16, 2009 ª2009 Elsevier Inc. 43



Neuron

Network-Based Neurodegeneration
Figure 2. Convergent Syndromic Atrophy, Healthy ICN, and Healthy Structural Covariance Patterns

(A) Five distinct clinical syndromes showed dissociable atrophy patterns, whose cortical maxima (circled) provided seed ROIs for ICN and structural covariance

analyses. (B) ICN mapping experiments identified five distinct networks anchored by the five syndromic atrophy seeds. (C) Healthy subjects further showed gray

matter volume covariance patterns that recapitulated results shown in (A) and (B). For visualization purposes, results are shown at p < 0.00001 uncorrected (A and

C) and p < 0.001 corrected height and extent thresholds (B). In (A)–(C), results are displayed on representative sections of the MNI template brain. Color bars

indicate t-scores. In coronal and axial images, the left side of the image corresponds to the left side of the brain. ANG, angular gyrus; FI, frontoinsula; IFGoper,

inferior frontal gyrus, pars opercularis; PMC, premotor cortex; TPole, temporal pole.
mapping experiments in a separate group of 19 HCs (HC2). These

controls, also age-matched to the patient groups, underwent

6 min of task-free fMRI scanning. From these data, we extracted

the mean BOLD signal time series from the five syndrome-asso-

ciated ROIs and entered these time series into five separate

whole-brain intrinsic functional connectivity analyses. The result-

ing ROI-based network maps then served as spatial templates

for independent component analysis (ICA), following previous

approaches (Greicius et al., 2004; Seeley et al., 2007). Next, we

identified a best-fit ICA-generated component for each network

template for each subject and combined these components

to produce group-level network maps for each seed ROI. As

anticipated, the five disease-vulnerable ROIs anchored five

distinct ICNs in HCs (Figure 2B). Remarkably, as predicted by

the network degeneration hypothesis, these distributed network

maps, though generated from isolated cortical seed ROIs, closely

mirrored the atrophy patterns seen in the five neurodegenerative

syndromes (Figures 2 and 3).

Normal Structural Covariance Patterns Mirror Intrinsic
Functional Connectivity
Physiological studies have shown that synchronous neuronal

firing promotes network-based synaptogenesis (Bi and Poo,

1999; Katz and Shatz, 1996). Therefore, we further questioned
44 Neuron 62, 42–52, April 16, 2009 ª2009 Elsevier Inc.
whether coherent spontaneous ICN activity might impact

normal cortical structure. Specifically, we hypothesized that

functionally correlated brain regions would show correlated

gray matter volumes across healthy subjects. One previous

VBM study, though not designed to assess the relationship

between functional connectivity and structure, selected land-

mark-based cortical and limbic ROIs and found group-level

gray matter density correlations between these ROIs and

homologous contralateral and functionally related ipsilateral

regions (Mechelli et al., 2005). We adapted these methods to

study structural covariance patterns arising from disease-

vulnerable foci, applying the same seed ROIs (Figure 2A, Table

S2) used to probe our intrinsic functional connectivity data.

Local ROI mean gray matter intensities extracted from the five

seeds provided covariates for five separate whole-brain statis-

tical parametric regression analyses in which age and gender

were entered as nuisance covariates. These studies revealed

striking convergence between healthy intrinsic functional

connectivity, derived within subjects (Figures 2B, 3B, 4A, and

4B), and structural covariance, assessed across subjects

(Figures 2C, 3C, 4C, and 4D). As a result, our three data streams

converged (Figures 5 and 6). That is, normal ICN and structural

covariance patterns mirrored each other and reflected, with

high fidelity, those regions that codegenerate in distinct human
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Figure 3. Detailed Network Mapping of the Right Frontal Insula, a Focus of Neurodegeneration in bvFTD

(A) Reduced gray matter volume in bvFTD versus controls (p < 0.05, whole-brain FWE corrected) occurs within regions showing (B) intrinsically correlated BOLD

signals in controls (p < 0.001, whole-brain corrected height and extent thresholds) and (C) structural covariance in controls (p < 0.05, whole-brain FWE corrected).

These distributed spatial maps overlap (D) within a ‘‘network’’ that reflects known primate neuroanatomical connections. Color bars indicate t-scores. AI, anterior

insula; dACC, dorsal anterior cingulate cortex; dlPFC, dorsolateral prefrontal cortex; dPI, dorsal posterior insula; FO, frontal operculum; MDthal, mediodorsal

thalamus; SLEA, sublenticular extended amygdala; vlPFC, ventrolateral prefrontal cortex; vmStr, ventromedial striatum.
neurodegenerative syndromes. bvFTD was chosen to highlight

convergence of the three maps in greater detail (Figure 3).

ROI functional time series from a representative control subject

(Figures 4A and 4B) and related group-level structural correla-

tion plots (Figures 4C and 4D) further illustrate the brain’s

shared functional-structural covariance architecture.

Disease-Vulnerable Networks Are Dissociable: Spatial
Similarity and Overlap Analyses
To quantify the spatial similarity between each atrophy pattern

and the healthy functional-structural covariance networks, we

used the 10 control group correlation maps (5 functional, 5

structural) to generate goodness-of-fit (GOF) scores to each

syndromic atrophy map. Fit was defined as the difference

between the mean t-score of all voxels inside versus outside

each binary spatial atrophy template. These analyses indicated

a strong fit between the intrinsic functional and structural

covariance maps and their source atrophy patterns (Figures

5A and 5C). Although only a small, single ROI from each source
map (Figure 2A) was used to seed the ICN and structural

covariance analyses, the resulting healthy networks fit better

with their source atrophy maps than with the other four disease

patterns.

To confirm our group-level spatial similarity findings, we used

each HC2 subject’s best-fit ICA components (one for each

seed ROI) to generate individual GOF scores to the source and

other atrophy maps (Figure 5B). Paired-sample t tests (n = 19,

two-tailed) showed significant source versus other GOF differ-

ences for all five ICNs (right angular gyrus [ANG]: t = 6.9, p =

0.000002; right frontoinsula [FI]: t = 2.4, p = 0.03; left Tpole:

t = 7.4, p = 0.0000007; left inferior frontal gyrus [IFG]: t = 4.7,

p = 0.0002; right premotor cortex [PMC]: t = 8.6, p =

0.00000009; mean of all seeds: t = 8.8, p = 0.00000006). The least

strong (though still significant) source versus other GOF statis-

tical difference involved the right FI ICN. As highlighted in Figure 3,

this ICN and its structural covariance counterpart map showed

robust qualitative similarity to the bvFTD atrophy map at the

group level. We derived further support for the close
Neuron 62, 42–52, April 16, 2009 ª2009 Elsevier Inc. 45



Neuron

Network-Based Neurodegeneration
Figure 4. Relationship between Intrinsic Functional Connectivity and Structural Covariance in the Healthy Human Brain

(A) The bvFTD-associated group-level ICA map (parent seed = right FI) was used to extract ROI BOLD signal time series from a single representative control

subject (B). These time series reveal the correlated functional signals arising from the right and left FI and the right dACC, primary neurodegeneration foci in

bvFTD. These same ROIs were applied to each of the 65 HC1 subjects to extract and plot local gray matter intensities for each ROI against the subject pool,

randomly ordered on the x axis to illustrate the structural covariance (C). Plots of right FI gray matter intensity against left FI and dACC intensities reveal the

strength of within-network gray matter correlations (D). a.u., arbitrary units.
atrophy-ICN relationship by comparing each HC2 subject’s first

and second best-fit ICA components, for each ICN, to the rele-

vant source atrophy maps (see Experimental Procedures). This

analysis confirmed a sharp GOF drop-off from the first to second

best-fitting ICA components (paired-sample t tests: right ANG, t =

7.3, p = 0.0000009; right FI, t = 5.3, p = 0.00005; left Tpole, t = 8.6,

p = 0.00000008; left IFG, t = 4.7, p = 0.0002; right PMC, t = 5.1; p =

0.00008). By definition, the remaining (unselected) components

(third best-fit and beyond) for each subject fit the relevant atrophy
46 Neuron 62, 42–52, April 16, 2009 ª2009 Elsevier Inc.
patterns even less well. Therefore, our ICA and component selec-

tion procedures effectively identified the five normal ICNs that

correspond best to the five syndromic atrophy patterns.

Finally, to visualize the spatial relationships among the five

disease-vulnerable networks, we determined the voxel-wise

(whole-brain) overlap of each three-map set (atrophy, intrinsic

functional connectivity, and structural covariance associated

with each ROI) and plotted the five resulting overlap maps on a

shared template. Because we hypothesized that the five systems
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Figure 5. Quantitative Spatial Similarity of Each ICN and Structural Covariance Map with the Five Syndromic Atrophy Maps

Binary spatial templates derived from the five atrophy maps were used to generate ‘‘goodness-of-fit’’ (GOF) scores that reflect how well the healthy intrinsic func-

tional (A and B) and structural (C) correlation maps fit each syndrome’s atrophy pattern. GOF was defined as the difference between the t-score mean within

versus outside each atrophy template, such that each ICN or structural correlation map had one ‘‘source’’ GOF score, for the atrophy map used to derive its

seed, and four ‘‘other’’ scores for the four remaining atrophy templates. This procedure revealed higher GOF for source versus other maps for each seed at

the group level (A and C). At the single-subject level (B), all ICNs showed significantly greater GOF to source versus other atrophy maps. Data are shown as

mean ± SEM (where applicable). *p < 0.05. **p < 0.0005.
would prove dissociable, we lowered the statistical threshold for

each map used to create the overlaps (see Experimental Proce-

dures), in effect reducing our power to demonstrate spatial diver-

gence among the five networks. Nonetheless, the five overlap

maps showed minimal overlap with each other (Figure 6), illus-

trating the dissociable nature of these targeted brain systems.

DISCUSSION

Our results show that functional and structural network mapping

approaches yield robust, convergent, anatomically predictable

networks, and that specific neurodegenerative diseases target

these patterned brain systems. First, we characterized five early-

stage dementia syndromes to isolate five circumscribed atrophy

patterns, replicating and extending previous findings (Boccardi

et al., 2005; Gorno-Tempini et al., 2004; Josephs et al., 2006,

2008; Seeley et al., 2008a). We then demonstrated that these

spatial disease patterns reflect the healthy brain’s intrinsic

functional network architecture. Although we and others have

noted the concordance between AD-related atrophy and healthy

intrinsic functional connectivity (Buckner et al., 2005; Greicius

et al., 2004), in this study we confirmed the network degeneration

hypothesis across five distinct dementia syndromes. Because

these syndromes describe the clinical rather than molecular

disease features, and because each syndrome can result from

diverse underlying molecular pathologies, our data suggest that

numerous disease proteins, including b-amyloid, tau, alpha-synu-

clein, and TDP-43, have the capacity to misfold and aggregate

with specific brain networks.

The ICNs linked here to disease represent canonical findings

from the ICN literature. Our AD-affected ICN (right ANG seed)

corresponds to the ‘‘default mode network’’ that participates in
episodic memory (Buckner et al., 2005) and became known for

its task-related deactivations across fMRI studies (Fox et al.,

2005; Fransson, 2005; Greicius et al., 2003). The ICN targeted

in bvFTD (right FI seed) was first identified with ICA (Beckmann

et al., 2005) and later linked to emotional salience processing

capacities (Seeley et al., 2007) lost in early bvFTD (Seeley,

2008). SD affects an ICN (left Tpole seed) that has escaped

previous detection in humans but corresponds to a Tpole-subge-

nual cingulate-ventral striatum-amygdala network, well-estab-

lished in nonhuman primates (Mesulam and Mufson, 1982), that

shows progressive atrophy in early-stage SD (Brambati et al.,

2007). The PNFA-targeted ICN (left IFG seed) includes the frontal

operculum, primary and supplementary motor cortices, and infe-

rior parietal lobule bilaterally, linking the language and motor

systems that enable speech fluency. This ICN, often divided

into left and right hemispheric systems, has been noted in several

previous studies (Beckmann et al., 2005; Damoiseaux et al.,

2006; De Luca et al., 2006; van den Heuvel et al., 2008). In

PNFA, asymmetric degeneration of this system may reflect its

accentuated functional and connectional asymmetry in healthy

humans (Stark et al., 2008). In CBS, prominent skeletal and ocular

motor abnormalities result from disease within a dorsal sensori-

motor association network (right PMC seed) detailed in several

ICN studies (De Luca et al., 2006; Fox et al., 2005; Vincent

et al., 2008) and elegantly mapped in the macaque using conver-

gent ICN, oculomotor task-based fMRI, and axonal tracer

methods (Vincent et al., 2007). ICNs frequently reported (Beck-

mann et al., 2005; Damoiseaux et al., 2006; De Luca et al.,

2006; van den Heuvel et al., 2008) but not studied here include

primary and secondary visual networks that may provide

substrate for the visual-spatial variant of AD known as the poste-

rior cortical atrophy syndrome (Hof et al., 1997), a primary
Neuron 62, 42–52, April 16, 2009 ª2009 Elsevier Inc. 47
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Figure 6. Neurodegenerative Syndromes Target Anatomically Dissociable Brain Systems

Colored regions highlight voxels found within associated maps of syndromic atrophy (p < 0.0001, uncorrected; patients versus controls), intrinsic functional

connectivity (ICA-derived; p < 0.01, corrected; healthy controls only), and structural covariance (p < 0.0001, uncorrected; healthy controls only). The color

code (bottom) refers to the atrophy map used to derive the relevant seed ROI. These results, statistically thresholded to inflate potential overlap across the

five three-map data sets, illustrate the dissociable nature of the targeted brain systems.
sensorimotor ICN that may relate to amyotrophic lateral sclerosis

(Kassubek et al., 2005), and a lateral frontoparietal executive-

control network (Seeley et al., 2007; Vincent et al., 2008) that

falters in most neurodegenerative diseases as degeneration

spreads beyond the sites of initial injury into widely intercon-

nected supervisory neocortical systems.

Confirmation of the network degeneration hypothesis raises

important questions about how specific syndromes will impact

ICN strength. Previous studies suggest that AD attenuates

connectivity within the right ANG (default mode) network (Grei-

cius et al., 2004; Supekar et al., 2008), even during early clinical

stages (Sorg et al., 2007). Task-based episodic memory fMRI

studies, in contrast, suggest heightened hippocampal activation

during prodromal AD (Dickerson et al., 2004), and an AD intrinsic

connectivity study revealed focal frontal connectivity enhance-

ments (Supekar et al., 2008). For the non-AD dementia

syndromes, no published ICN data are available. Therefore, it

remains uncertain whether disease causes network connectivity

impairment, upregulation, or effects that vary by disease stage.

This issue requires clarification before network connectivity

approaches can be used to diagnose dementia or track its

progression. Those patients who scale up connectivity within

early-affected networks or unaffected compensatory systems

may prove more resilient to functional decline. Even more intri-

guingly, patients with focal connectivity enhancements may
48 Neuron 62, 42–52, April 16, 2009 ª2009 Elsevier Inc.
develop new or intensified functional capabilities (Seeley et al.,

2008b).

Why does neurodegeneration spread throughout specific

neural networks? The present study was designed to raise rather

than answer this question, but several mechanisms may apply.

First, selective neuronal vulnerability within key synaptic conver-

gence zones may disconnect or weaken functional circuits

(Hyman et al., 1984), inducing deleterious network-wide

compensatory strategies. This notion fits with AD transgenic

mouse models, in which aberrant medial temporal circuit excit-

ability disrupts homeostasis and function, leading to progressive

degeneration within the circuit (Palop et al., 2006, 2007). Second,

retrograde axonal transport deficits may cut off growth factor

supply to long-range projection neurons, begetting axonal

degeneration, synapse loss, and postsynaptic dendrite retrac-

tion (Salehi et al., 2006). Third, as seen in experimental prion

disease, misfolded disease proteins may themselves propagate

along neural processes, marching throughout local and then

long-range circuits via transsynaptic spread (Scott et al., 1992).

This account of our data would require that nonprion misfolded

disease proteins could trigger misfolding of adjacent same-

species proteins, which, in turn, could cascade down processes

and between interconnected neurons. Although many aspects of

this candidate mechanism remain unexplored, in a recent study

pathological tau conformers were shown to induce native
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(unfolded) tau to adopt a pathological conformation, and this mis-

folding seeded further conformational changes in adjacent tau

molecules (Frost et al., 2008). Finally, each syndrome we studied

features sporadic and autosomal dominantly inherited forms. For

AD, known susceptibility genes, such as the Apo 34 allele,

increase risk or hasten disease onset. Lifelong possession of

a disease-causing mutation (Geschwind et al., 2001) or risk factor

allele (Reiman et al., 2004) may destabilize network connectivity

and function in young adulthood or even childhood (Shaw et al.,

2007), setting the stage for mid- to late-life neurodegeneration.

These hypothetical network degeneration mechanisms need

not be considered mutually exclusive.

Several recent studies suggest that, in health, functionally

correlated brain regions feature defined axonal connections

(Greicius et al., 2008; Seeley et al., 2007; Sporns et al., 2005).

Our findings demonstrate a less intuitive linkage, revealing that

healthy ICNs feature correlated gray matter volume. This finding

builds on existing notions of ‘‘small worldness’’ in human cortical

gray matter structure (He et al., 2007) by demonstrating a direct,

network-based function-structure relationship. Why gray matter

function and volume correlate, however, remains unclear. During

development, network covariance may emerge (Fair et al., 2008)

and remodel itself (Kelly et al., 2008; Lerch et al., 2006) in

response to core inherited projection map formation scripts

(Ruthazer and Cline, 2004) that interact with the environment to

drive individual differences in cognitive, emotional, and motor

function (Seeley et al., 2007). Use-related trophic effects, in

turn, may continue to reshape the cortical mantle throughout

adulthood (Maguire et al., 2000), linking synaptic strength,

synaptic density, and neuropil mass within functionally coactive

regions.

In summary, neurodegenerative diseases are not diffuse,

random, or confluent, but instead target specific large-scale

distributed networks. In the healthy brain, these networks feature

convergent intrinsic functional and structural covariance. To

build more comprehensive disease pathogenesis models, neuro-

degeneration researchers should pursue the interface between

disease protein aggregation and selective, network-driven

neuronal vulnerability.

EXPERIMENTAL PROCEDURES

Subjects

All subjects (or their surrogates) provided informed consent and the proce-

dures were approved by the institutional review boards at UCSF and Stanford

University.

Patients: Structural Imaging

Subjects for each patient group were selected from the UCSF Memory and

Aging Center (MAC) database. All had undergone a comprehensive neurolog-

ical, neuropsychological, and functional assessment, and final diagnoses were

rendered at a multidisciplinary consensus conference, as detailed previously

(Liu et al., 2004). To be considered for inclusion, patients were required to

meet published research criteria, which do not include neuroimaging features,

for probable AD (McKhann et al., 1984), bvFTD (Neary et al., 1998), SD (Neary

et al., 1998), PNFA (Neary et al., 1998), or CBS (criteria developed at the MAC,

as previously described; Boxer et al., 2006) within 90 days of MRI scanning. In

addition, the following selection criteria were required: (1) CDR total score % 1,

(2) CDR and Mini Mental State Examination (MMSE) completed within 90 days

of scanning, (3) absence of comorbid motor neuron disease, and (4) absence

of significant vascular or other structural lesions on MRI. We chose to study
only these five syndromes because they could be matched for age while

preserving adequate sample size. Although potentially relevant to our study

aims, patients with the posterior cortical atrophy syndrome, progressive

supranuclear palsy, dementia with Lewy bodies, Huntington’s disease, amyo-

trophic lateral sclerosis, and multiple systems atrophy were excluded to

constrain the scope of the study and promote matching or because too few

subjects with these diagnoses had available research MRI scans. The three

patient groups with the most subjects meeting inclusion criteria were bvFTD

(n = 24), AD (n = 49), and SD (n = 32). Therefore, 24 AD and 24 SD subjects

were chosen from their larger pools to match the bvFTD group, as closely as

possible, for age, gender, and education (Table S1). PNFA (n = 13) and CBS

(n = 17) groups were smaller than the others but still comparable to published

samples used to illustrate the syndromic regional atrophy patterns (Boxer

et al., 2006; Gorno-Tempini et al., 2004; Josephs et al., 2006). These

syndromes are known to feature uneven gender distributions (Johnson et al.,

2005); therefore, in part because of our strict inclusion criteria (e.g., CDR % 1),

all groups could not be matched for gender. Accordingly, gender was added

as a nuisance covariate to the neuroimaging analyses.

Importantly, we made a sharp distinction between clinical syndromes and

histopathological entities. Therefore, although the terms Alzheimer’s disease

and corticobasal degeneration are used by pathologists to describe specific

histopathologies, in this context we applied the terms Alzheimer’s disease

and corticobasal syndrome only to suggest clinical, not pathological, features.

This approach fits with our scientific objective, which was to determine the

relationship between syndromic atrophy patterns and healthy human brain

networks. Our overarching hypothesis, indeed, was that large-scale cortical

networks provide anatomical scaffoldings that are dismantled to produce clin-

ically recognizable lesion-deficit constellations (syndromes). Applying network

imaging to predict neuropathology was not a goal of this study; indeed, most

degenerative syndromes can be caused by several underlying pathologies,

and all neuropathological entities can give rise to diverse clinical syndromes.

UCSF Controls: Structural Imaging

HCs were recruited from the San Francisco community for the structural

imaging and neuropsychological analyses. These controls, referred to as

HC1, underwent a comprehensive neuropsychological assessment and

a neurological exam within 180 days of scanning. HC1 subjects were required

to have a CDR total score of 0, an MMSE of 28 or higher, no significant history

of neurological disease or structural pathology on MRI, and a consensus diag-

nosis of cognitively normal; 101 subjects met these criteria. This group was

reduced to 65 subjects to match, as closely as possible, the overall patient

group for age, gender, and education. No UCSF control subject took neuro-

psychiatric medications except one, who took buproprion 100 mg daily for

a remote history of depression.

Stanford Controls: Functional Imaging

HC subjects for the functional imaging analyses, referred to as HC2, were

recruited from the UCSF MAC (as described above) and from the Stanford

Medical Center community. The Stanford subjects denied any significant

neurologic or psychiatric history and were not taking psychoactive medica-

tions. All had MMSE scores of 27/30 or higher.

Image Acquisition

Structural Imaging

Structural MRI scans were obtained at UCSF on all patients and HC1 subjects.

Images were acquired on a 1.5 Tesla Magneton VISION system (Siemens Inc.,

Iselin, NJ) using a standard quadrature head coil. A volumetric magnetization

prepared rapid gradient echo (MP-RAGE) MRI (TR/TE/inversion time = 10/4/

300 ms) sequence was used to obtain a T1-weighted image of the entire brain

(15� flip angle, coronal orientation perpendicular to the double spin echo

sequence, 1.0 3 1.0 mm2 in-plane resolution of 1.5 mm slab thickness).

Functional Imaging

fMRI scanning was performed at Stanford University on all HC2 subjects.

Images were acquired on a 3 Tesla GE Signa Excite scanner (GE Medical

Systems, Milwaukee, WI) using a standard GE whole head coil. Twenty-eight

axial slices (4 mm thick, 1 mm skip) parallel to the plane connecting the anterior

and posterior commissures and covering the whole brain were imaged using a

T2* weighted gradient echo spiral pulse sequence (repetition time, 2000 ms;

echo time, 30 ms; flip angle, 80� and 1 interleave) (Glover and Lai, 1998). The
Neuron 62, 42–52, April 16, 2009 ª2009 Elsevier Inc. 49
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field of view was 200 x 200 mm2, and the matrix size was 64 x 64, yielding an

in-plane spatial resolution of 3.125 mm. To reduce blurring and signal loss

arising from field inhomogeneities, an automated high-order shimming method

based on spiral acquisitions was used before acquiring functional MRI scans

(D.H. Kim et al., 2000, Proc. 8th Ann. Mtg. of ISMRM, abstract). All subjects

underwent two 6 min task-free fMRI scans after being instructed only to remain

awake with their eyes closed. For 2 of 17 subjects, one of the two runs was

excluded due to technical factors.

Image Preprocessing and Analysis

Structural Imaging

VBM is a flexible whole-brain statistical analysis technique that can be used to

assess between-group differences in local brain tissue content or correlations

between tissue content and other measures of interest. Before analysis,

T1-weighted MR images underwent several preprocessing steps, following

an optimized VBM protocol (Good et al., 2001). First, a study-specific template

and priors were created to minimize spatial normalization and segmentation

errors. This approach helps to identify group differences in patients with neuro-

degenerative disease (Senjem et al., 2005). All subjects were used to create the

template, and custom images for each subject were generated by applying

affine and deformation parameters obtained from normalizing the gray matter

images, segmented in native space, to the custom template. Voxel values

were modulated by multiplying them by the jacobian determinants derived

from the spatial normalization step, and images were smoothed with a 12 mm

isotropic Gaussian kernel.

To identify gray matter regions significantly atrophied in each syndrome

versus HC1, each group was entered as a condition into a single model, and

linear contrasts were applied to derive five syndromic atrophy maps. From

these maps, we isolated the most significantly atrophied cortical region, desig-

nated as the voxel with the peak t-score (Table S2). We elected to use only

cortical seed ROIs because subcortical/limbic nuclei, such as the caudate or

amygdala, feature a dense admixture of subnuclear projection fields and

outputs with multinetwork connectivity. Therefore, after 4 mm fMRI data

smoothing, subcortical/limbic connectivity maps become less straightforward

to interpret than those derived using cortical seeds, and we sought to treat all

five network analyses similarly in this regard. In addition, VBM can overesti-

mate periventricular volume loss due to atrophy-related spatial registration

errors, even with the optimized methods employed here (Senjem et al.,

2005). This concern further justifies exclusion of subcortical seeds for func-

tional connectivity and structural covariance analyses. For the SD map, we

chose the second most atrophied cortical region because the peak region

fell within an area of susceptibility artifact on our T2* images (Ojemann et al.,

1997). Collectively, the syndromic peak voxels were used to create five

4 mm radius spherical ROIs using MarsbaR v0.41, an ROI toolbox for SPM

(M. Brett et al., 2002, 8th Int. Conf. on Func. Map. of the Human Brain, abstract).

These five cortical seeds were used in all subsequent structural and functional

correlation analyses.

Structural correlation analyses were applied only to the 65 HC1 subjects.

Adapting previous approaches by Mechelli et al. (2005), we extracted each

subject’s mean gray matter intensity from the five seed ROIs. These values

were then entered into separate covariate-only models to identify each voxel,

across the whole brain, whose gray matter intensity was significantly corre-

lated with that of each seed across subjects.

For all VBM analyses, age and gender were entered as nuisance covariates

and total intracranial volume served as a global correction factor. Preprocess-

ing and analysis was implemented in the SPM5 software package (www.fil.ion.

ucl.ac.uk/spm). For group contrast and correlation analyses, voxels were

considered significant if they met statistical threshold of p < 0.05, corrected

for family wise error (FWE).

Functional Imaging

Functional images were realigned, slice-time corrected, normalized, and

smoothed with a 4 mm Gaussian kernel. Normalization was carried out by

calculating the warping parameters between the mean T2* (spiral in/out) image

and the MNI EPI template and applying them to all images in the sequence.

Subsequently, the images were resampled at a voxel size of 2 mm3.

ROIs derived from the five syndromic atrophy patterns were then used to

seed five separate functional connectivity analyses, following previous
50 Neuron 62, 42–52, April 16, 2009 ª2009 Elsevier Inc.
methods (Seeley et al., 2007). That is, after removing the first eight n frames

to allow stabilization of the magnetic field, the average time series from the first

task-free scan was extracted from each ROI by averaging the time series of all

voxels within the ROI. Before averaging individual voxel data, scaling and

filtering steps were performed across all brain voxels as follows. To minimize

the effect of global drift, voxel intensities were scaled by dividing the value

of each time point by the mean value of the whole-brain image at that time

point. Next, the scaled waveform of each brain voxel was filtered using a band-

pass filter (0.0083/s < f < 0.15/s) to reduce the effect of low-frequency drift and

high-frequency noise (Lowe et al., 1998). The scaling and filtering steps were

applied equivalently to all voxels (including those in the ROIs). The resulting

time series, representing the average intensity (after scaling and filtering) of

all voxels in the ROI, was then used as a covariate of interest in a whole-brain,

linear regression, statistical parametric analysis. As a means of controlling for

nonneural noise in the ROI time series, we included, as a nuisance covariate,

the global average T2* time series. Contrast images corresponding to the ROI

time series regressors were derived individually for each subject, and entered

into second-level, random-effects analyses (joint height and extent thresholds

of p < 0.001 for significant clusters, corrected at the whole-brain level) (Poline

et al., 1997) to determine the brain areas that showed significant functional

connectivity with each seed across HC2 subjects. The resulting group maps

were used as spatial templates to select the best-fit independent component

from each subject in subsequent ICA analyses.

We used ICA to further refine our intrinsic functional connectivity maps (See-

ley et al., 2007). ICA decomposes a time course of whole-brain volumes (a 4D

image) from a single subject into independent spatiotemporal components.

After preprocessing, images were concatenated into 4D files and entered

into FSL 4.0 Melodic ICA software (http://www.fmrib.ox.ac.uk/fsl/index.

html). We allowed the program to automatically determine the dimensionality

of each data set, including the number of components. Among the 19 control

subjects, ICA extracted an average of 36.7 components (range 19–51) from

Run 1 and 36.5 components (range 29–52) from Run 2. After high-frequency

filtering, an average of 23.2 components (range 7–42) remained from Run 1

and 20.7 components (range 12–42) remained for Run 2. Temporal filtering

was not applied to the ICA data because ICA has been shown to separate non-

neural noise components from components of interest (Beckmann et al.,

2005). The components for each subject (from Run 1 or 2) that best fit the

ROI-derived group ICN template maps were selected using an automated

three-step procedure (Seeley et al., 2007). For 2 of 19 subjects, the algorithm

selected the same component for two of the five spatial templates. For one of

these subjects, the right parietal (AD) and left inferior frontal (PNFA) seed-

based ROI maps were best fit by the same component, and for the other

subject the right FI (bvFTD) and left inferior frontal (PNFA) seed maps best fit

the same component. One-sample t tests were performed on the best-fit

component images to derive a group-level ICN map for each seed. Signifi-

cance was determined using joint expected probability distribution with height

and extent thresholds of p < 0.001. The ICA-derived group maps were used in

all figures and spatial similarity analyses.

Spatial Similarity Analyses

The spatial similarity between atrophy maps and their related ICN and struc-

tural covariance maps was first quantified by measuring the GOF between

each atrophy map, binarized at a p < 0.05 FWE corrected threshold, and the

group-level ICA-derived ICNs and VBM-derived structural correlation maps.

GOF was defined as the difference between the mean of the t-scores inside

versus outside the binarized atrophy map. Therefore, each group-level corre-

lation map had five GOF scores: one ‘‘source’’ and four ‘‘other.’’ Here, source

refers to the GOF score from the atrophy map used to derive the correlation

map’s seed, whereas other refers to the four other atrophy maps. We further

compared each HC2 subject’s five best-fit ICA components (one for each

seed ROI) to the five atrophy maps, using the same GOF procedure. Other

GOF scores were averaged for each subject, and paired-sample t tests were

used to compare source versus mean other map GOF scores. Finally, to

assess the specificity of each atrophy-ICN pairing at the single-subject level,

we calculated mean source map GOF score for the best-fit ICA components

(one each from Runs 1 and 2) and compared these scores to the mean GOF

for the second best-fit components (Runs 1 and 2) using paired-sample t tests

(two-tailed). Because structural covariance cannot be derived for single

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.fmrib.ox.ac.uk/fsl/index.html
http://www.fmrib.ox.ac.uk/fsl/index.html
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subjects, statistical comparisons of structural covariance GOF results were

not performed.

To visualize the spatial overlap within related atrophy, functional connec-

tivity, and structural covariance maps, we loaded all three maps as overlays,

rendered at less stringent statistical thresholds (atrophy: p < 0.0001, uncor-

rected; functional connectivity: ICA maps at p < 0.01 joint height and extent

thresholds, corrected at the whole-brain level; structural covariance: p <

0.0001, uncorrected), and determined the intersection of the three maps,

defined as those voxels contained in 3/3 maps at these thresholds. This proce-

dure allowed us to demonstrate the convergence of the three maps within

each set, as well as the spatial dissimilarity between the five separate three-

map sets (Figure 6).

SUPPLEMENTAL DATA

The supplemental data for this article include two tables and can be found at

http://www.neuron.org/supplemental/S0896-6273(09)00249-9.
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