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and Hippocampal Atrophy in Alzheimer’s
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Abstract.
Background: Variants in triggering receptor expressed on myeloid cells 2 (TREM2) are associated with increased Alzheimer’s
disease (AD) risk. Recent studies have reported inconsistent peripheral TREM2 mRNA expression levels and relationship
with cognitive scores in AD and mild cognitive impairment (MCI). Additionally, no study has examined the association of
peripheral TREM2 levels with neuroimaging measures in AD and MCI.
Objective: To determine peripheral TREM2 mRNA levels in AD, amnestic MCI (aMCI) and healthy controls, and the
association with cognitive performance and brain structural changes.
Methods: We measured peripheral TREM2 mRNA levels in 80 AD, 30 aMCI, and 86 healthy controls using real time
polymerase chain reaction. TREM2 levels were correlated with various cognitive performance and brain volumes, correcting
for APOE4 status.
Results: TREM2 mRNA levels were significantly higher in AD compared to controls and aMCI. Levels did not differ between
aMCI and controls. Corrected for APOE4, higher TREM2 levels correlated with lower Mini-Mental State Examination,
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Montreal Cognitive Assessment (MoCA) and episodic memory scores, and lower total grey matter and right hippocampal
volumes. Whole-brain voxel-based morphometry analysis found negative association between TREM2 mRNA levels and
grey matter volumes in temporal, parietal and frontal regions. AD subjects with MoCA scores ≤20 had higher TREM2 levels
correlating with smaller total grey matter, left hippocampal and right hippocampal volumes.
Conclusion: Peripheral TREM2 mRNA levels are higher in AD and are associated with AD-related cognitive deficits and
hippocampal atrophy. Our findings suggest that TREM2 may be a potential non-invasive peripheral biomarker for AD
diagnosis.
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INTRODUCTION

The triggering receptor expressed on myeloid
2 (TREM2) is a transmembrane glycoprotein
innate immune phagocytic receptor expressed on
brain microglia that regulates key signaling events
involved in immune response and phagocytic activity
[1, 2]. Rare variants in TREM2 increase susceptibil-
ity to AD, with an odds ratio similar to that of the
apolipoprotein E4 (APOE4) allele [3, 4]. In patho-
logically normal human brains, TREM2 is expressed
in substantial abundance in the hippocampus and
neocortex [3], and in AD, TREM2 appears to be
overexpressed in amyloid-associated microglia in the
temporal cortices [5], correlating with markers of
neurodegeneration including phosphorylated tau [5].

Development of accessible fluid biomarkers
remains important for improving diagnostic accuracy
in neurodegenerative diseases like AD, and TREM2
has arisen as a prime molecular target given grow-
ing evidence of its role in AD pathophysiological
processes [3, 6]. Cerebrospinal fluid (CSF) soluble
TREM2 (sTREM2) levels were recently reported to
be increased in AD compared to controls, with ele-
vated CSF sTREM2 possibly reflecting increased
brain microglia activation in response to amyloid
deposition [7, 8]. While CSF remains the more ideal
fluid biomarker given its direct derivation from the
brain, lumbar puncture is invasive. The accessibility
of blood-based biomarkers in AD is appealing, but the
difficulty lies in how plausible changes in the blood
reflect neurodegenerative processes in the brain, as
well as the dilution of proteins and other molecules
as they traffic from the brain to CSF and to the blood-
stream. While it remains unlikely that a blood-based
biomarker will replace more reliable CSF biomark-
ers, the accessibility and possibly higher sensitivity in
the context of repeated measurements to track clinical
change far outweighs its lower specificity [9].

This has led to preliminary efforts in exploring
the potential of TREM2 as a blood-based biomarker

for AD diagnosis. Higher TREM2 mRNA expression
and corresponding protein levels were reported in AD
patients compared to controls; correlating with lower
Mini-Mental State Examination (MMSE) scores
[10]. Another study found higher TREM2 levels in
AD and schizophrenic patients compared to con-
trols [11], with levels showing no correlation with
MMSE scores. Reports on TREM2 mRNA levels at
the pre-dementia stage remain scarce. To our knowl-
edge, only one other study has looked at TREM2
expression in MCI subjects, finding higher TREM2
mRNA expression in blood-derived monocytes and
monocyte-derived macrophages in MCI compared to
AD and controls [12]. Furthermore, none of these
studies looked at correlation with neuroimaging,
and it remains unknown how changes in TREM2
mRNA relate to brain structural changes in AD
and MCI.

To fill this gap, we aimed to study changes in
TREM2 expression in amnestic MCI (aMCI) and
AD patients, and its association with cognition and
brain atrophy. We hypothesized that: (1) AD and
aMCI would have higher TREM2 mRNA levels com-
pared to age-matched healthy controls, and (2) higher
TREM2 levels would correlate with lower cogni-
tive performance and region-specific brain atrophy,
especially temporal and hippocampal regions, given
pathological evidence of increased TREM2 expres-
sion in the hippocampus in parallel with amyloid
deposition [3].

MATERIALS AND METHODS

Study subjects

Participants (N = 196 (80 AD, 30 aMCI, 86
healthy controls), mean age = 67.06 years, SD = 8.14,
range = 50–88 years, Table 1) were evaluated and
recruited from the National Neuroscience Insti-
tute, Singapore and Singapore General Hospital
between July 2013 and March 2016. Detailed clinical
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Table 1
Subject demographic and clinical characteristics

HC aMCI AD p value

(A) Whole cohort
Total subjects, n 86 30 80
Age, years 63.4 ± 6.6 65.7 ± 6.5 71.5 ± 8.2h,m <0.001
Gender, % males 43.0 43.3 52.5 0.432
Race, % (Chinese/Malay/Indian/Others) 93.0/1.2/4.7/1.1 93.3/0/6.7/0 78.7/7.5/10.0/3.8 0.191
APOE ε4 carriers (%) 15.1 33.3 45.0 <0.001
Education, years 13.0 ± 3.4 11.1 ± 3.2h 8.5 ± 4.0h,m <0.001
MMSE score 28.8 ± 1.2 27.2 ± 1.6h 21.7 ± 4.9h,m <0.001
MOCA score 28.0 ± 1.8 25.3 ± 2.5h 17.9 ± 5.6h,m <0.001
Cognitive scores
Episodic memory 0.5 ± 0.7 –1.0 ± 0.7h –2.6 ± 1.3h,m <0.001
Executive function 0.6 ± 0.5 –0.2 ± 0.8h –2.6 ± 2.3h,m <0.001
Attention 0.4 ± 0.6 –0.2 ± 0.5h –0.7 ± 0.9h,m <0.001
Language 0.5 ± 0.6 –0.2 ± 0.7h –1.2 ± 1.0h,m <0.001
Visuospatial 0.4 ± 0.4 –0.3 ± 1.5h –1.1 ± 1.2h,m <0.001
Brain volumes
Total grey matter (cm3) 555.8 ± 47.5 546.6 ± 35.2 514.9 ± 50.8h,m <0.001
Total white matter (cm3) 431.1 ± 52.8 403.0 ± 39.1h 384.6 ± 50.2h,m <0.001
Right hippocampus (cm3) 4.2 ± 0.4 4.0 ± 0.5 3.3 ± 0.7h,m <0.001
Left hippocampus (cm3) 4.0 ± 0.4 3.8 ± 0.6 3.2 ± 0.6h,m <0.001
Ventricular (cm3) 24.6 ± 11.8 25.1 ± 13.6 40.8 ± 17.2h,m <0.001
Total intracranial (cm3) 1391.1 ± 155.5 1356.9 ± 131.1 1382.8 ± 147.1 0.616
Total white matter hyperintensities (cm3) 3.3 ± 5.4 3.5 ± 4.5 10.8 ± 13.1h,m <0.001
(B) Subset cohort
Total subjects, n 67 23 38
Age, years 65.2 ± 5.6 65.7 ± 6.9 67.1 ± 6.4 0.275
Gender, % males 47.8 39.1 47.4 0.760
Race, % (Chinese/Malay/Indian) 95.5/1.5/3 91.3/0/8.7 89.4/5.3/5.3 0.484
APOE ε4 carriers (%) 11.9 30.4 60.5 <0.001
Education, years 12.9 ± 3.4 11.4 ± 3.3 8.6 ± 3.6h,m <0.001
MMSE score 28.9 ± 1.2 27.3 ± 1.7h 22.1 ± 5.3h,m <0.001
MOCA score 27.9 ± 1.8 25.4 ± 2.5h 18.8 ± 5.4h,m <0.001
Cognitive scores
Episodic memory 0.5 ± 0.7 –1.0 ± 0.7h –2.6 ± 1.4h,m <0.001
Executive function 0.6 ± 0.5 –0.3 ± 0.8h –2.3 ± 2.3h,m <0.001
Attention 0.4 ± 0.6 –0.2 ± 0.5h –0.7 ± 0.9h,m <0.001
Language 0.5 ± 0.6 –0.006 ± 0.7h –0.9 ± 0.9h,m <0.001
Visuospatial 0.4 ± 0.4 –0.3 ± 1.6h –1.1 ± 1.1h,m <0.001
Brain volumes
Total grey matter (cm3) 556.0 ± 47.7 546.4 ± 36.0 530.7 ± 53.1h,m 0.001
Total white matter (cm3) 433.3 ± 52.1 404.8 ± 39.0h 397.3 ± 51.7h,m <0.001
Right hippocampus (cm3) 4.2 ± 0.4 4.0 ± 0.5 3.5 ± 0.7h,m <0.001
Left hippocampus (cm3) 3.9 ± 0.4 3.8 ± 0.6 3.3 ± 0.6h,m <0.001
Ventricular (cm3) 26.2 ± 11.9 24.3 ± 13.3 38.5 ± 19.3h,m <0.001
Total intracranial (cm3) 1401.9 ± 153.6 1356.4 ± 134.0 1401.3 ± 148.3 0.420
Total white matter hyperintensities (cm3) 3.65 ± 5.5 3.39 ± 4.6 6.71 ± 11.40 0.265

(A) Group differences for the whole cohort. (B) Group comparison for the subset of age- and gender-matched participants with complete
cognitive data and satisfactory imaging data quality from the larger group. Continuous variables are expressed as mean ± SD and were
analyzed by one-way ANOVA. Categorical variables are expressed in percentages and were analyzed by Chi-square test. Cognitive domain
scores (Episodic memory, Executive, Attention, Language, and Visuospatial function) are shown as z-scores. Brain structure analysis was
controlled for total intracranial volume. Superscript letters indicate whether group mean was significantly worse than HC (h), aMCI (m), or
AD, based on post hoc pairwise comparisons (p < 0.05). MMSE, Mini Mental State Examination; MOCA, Montreal Cognitive Assessment;
HC, healthy controls; aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease.

evaluation including comprehensive physical exami-
nation, medical and cognitive history from the patient
and a reliable informant was conducted by neu-
rologists specialized in dementia. Diagnosis of AD

was based on the NINCDS-ADRDA [13] and aMCI
was diagnosed using Petersen criteria [14]. Controls
included community volunteers that were cogni-
tively normal with Clinical Dementia Rating scores
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of 0 and MMSE above or equal to 26, and not
having any other significant neurological, psychi-
atric or systemic disease. All participants underwent
venous blood taking, detailed neuropsychological
assessment, and advanced neuroimaging. None of
the subjects were suffering from acute infective or
inflammatory illnesses at the time of blood sam-
ple collection. Finally, out of the whole sample,
38 AD, 23 aMCI and 67 cognitively healthy con-
trols matched for age and gender with available
TREM2 mRNA expression levels, APOE genotype,
cognitive data and MRI meeting quality control cri-
teria were included in the brain-genetic-cognition
statistical analyses. Table 1 summarizes the subject
demographics, cognitive scores and brain measures
of both samples.

Neuropsychological assessment

Participants underwent detailed neuropsycholog-
ical testing by trained research psychologists com-
prising assessments of (1) Global cognition: MMSE
[15] and Montreal Cognitive Assessment (MoCA)
[16]; (2) Episodic Memory: Alzheimer’s Disease
Assessment Scale-cognitive subscale (ADAS-Cog)
Delayed Word List [17] and Wechsler Memory Scale-
IV Visual Reproduction [18]; (3) Executive Function:
Frontal Assessment Battery [19], and Colour Trails 2
[20]; (4) Language: Boston Naming Test-Hong Kong
version [21] and ADAS-Cog Fruit fluency [17]; (5)
Attention/working memory: Wechsler Adult Intel-
ligence Scale (WAIS-IV) Digit Span Forward and
Coding [18]; (6) Visuospatial function: WAIS-IV
Block design [18] and ADAS-Cog Constructional
praxis [17]. For more details see Methods in the Sup-
plementary Material.

MRI acquisition and image processing

MRI scans were performed at Duke-NUS Med-
ical School, Singapore on a 3T Tim Trio System
(Siemens, Erlangen, Germany) or a 3T Prisma
Fit System (Siemens, Erlangen, Germany) after
scanner upgrade (see supplementary methods for
details). We obtained high-resolution T1-weighted
MPRAGE (Magnetization-Prepared Rapid Gradient
Echo) sequences (192 continuous sagittal slices,
TR/TE/TI = 2300/2.28/900 ms, flip angle = 9◦, FOV
= 256 × 240 mm2, matrix = 256 × 240, isotropic
voxel size = 1.0 × 1.0 × 1.0 mm3, bandwidth = 240
Hz/pixel) and FLAIR (Fluid Attenuated Inversion
Recovery) sequences (192 continuous sagittal slices,

TR/TE/TI = 5000/387.0/1800 ms, flip angle = 15◦,
FOV = 256 × 256 mm2, matrix = 256 × 256, isotro-
pic voxel size = 1.0 × 1.0 × 1.0 mm3) on both
scanners using the same parameters. Visual check
on both T1 and FLAIR images was performed to
remove images with artefacts.

The structural T1-weighted images were
pre-processed using FreeSurfer (version 5.3,
http://surfer.nmr.mgh.harvard.edu) [22–25]. The
automated pre-processing involved removal of non-
brain tissue, Talairach transformation, segmentation
of subcortical structures, intensity normalization,
tessellation of the grey and white matter boundaries
to generate pial and white matter surfaces, and
topology correction. Cortical grey and white matter
volumes were found from surface-based calculation
from the pial and white matter surfaces. Automated
labelling based on a spatial probabilistic atlas was
performed to obtain bilateral ventricular and hip-
pocampal volumes [24]. Total intracranial volume
(TIV) was estimated from the atlas scaling factor,
which was computed from the determinant of the
transformation from the native-space brain to the
atlas [26].

Moreover, to investigate whether and how TREM2
level was associated with region-specific brain
atrophy, we applied an optimized whole-brain
voxel-based morphometry (VBM) protocol [27]
using the VBM8 toolbox (http://dbm.neuro.uni-
jena.de/vbm8/) in Statistical Parametric Mapping
(SPM12) (http://www.fil.ion.ucl.ac.uk/spm/). We
derived the subject-level grey matter volume prob-
ability maps from T1 structural images following
our previous approach [28, 29] (see Supplementary
Methods).

White matter hyperintensity (WMH) volume
was obtained using an in-house automatic pro-
cedure as described previously [30]. Briefly,
this procedure included: 1) segmentation of T1-
weighted structural images into grey matter (GM),
white matter (WM) and cerebrospinal fluid (CSF)
using Statistical Parametric Mapping (SPM8;
http://www.fil.ion.ucl.ac.uk/spm/); 2) removal of
non-brain regions from each subject’s FLAIR images
using the T1-derived GM and WM masks; 3) determi-
nation of modal pixel intensity from the skull-stripped
FLAIR images; 4) threshold-based segmentation of
individual FLAIR images using a threshold of 1.3
times the modal pixel intensity; 5) visual inspection
of segmented FLAIR images and removal of subjects
with segmentation errors; and 6) calculation of total
WMH volumes for each individual.

http://surfer.nmr.mgh.harvard.edu
http://dbm.neuro.uni-jena.de/vbm8/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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TREM2 mRNA measurement

Total RNA from peripheral whole blood was
isolated using PAXgene Blood RNA kit (Pre-
AnalytiX GmbH, Switzerland), according to the
manufacturer’s protocol. Complementary DNA
(cDNA) was reverse transcribed from 1ug of total
RNA with iScript cDNA Synthesis kit (Bio-Rad Lab-
oratories, Hercules, CA). Real-time qPCR reactions
were performed in triplicate for each sample using
SYBR Green Supermix kit (Bio-Rad) in CFX96
Touch Real-Time PCR Detection System (Bio-Rad).
Thermal cycling conditions included 3 min at 95◦C,
then 40 cycles of 10 s at 95◦C and 30 s at 65 ◦C. Melt-
curve analysis was performed immediately after the
amplification step to ensure only a single product had
been amplified. Reference gene GAPDH was used
to normalize TREM2 mRNA levels and its relative
expression was determined by the 2–��CT method
[31]. For more details see Methods in the Supple-
mentary Material.

Single nucleotide polymorphism (SNP)
genotyping

Genomic DNA was extracted from peripheral
blood with QIAamp® DNA Blood Maxi Kit (Qia-
gen GmbH, Hilden, Germany) according to the
standard protocol. Genotyping for APOE isoforms
[rs429358 (ABI assay ID: C 3084793 20) and rs7412
(ABI assay ID: C 904973 10)] and TREM2 R47H
[rs75932628 (ABI assay ID: C 100657057 10) was
performed using TaqMan SNP genotyping assays
on ABI 7900HT PCR system (Applied Biosystems,
Foster City, CA). APOE genotype assignments were
performed as described previously [32].

Statistical analyses

Continuous variables were compared across the
three groups (HC, aMCI and AD) using one-way
ANOVA while categorical variables were compared
using Chi-square test. All brain structure analysis was
controlled for TIV and scanner type.

One-way ANCOVA was conducted to examine dif-
ferences in TREM2 mRNA expression levels across
the three groups. Age, gender, and ethnicity were
entered as nuisance variables as they have been
reported to confer potential effects on gene expres-
sion [33–36]. Significant ANOVA and ANCOVA
results were followed by least significant difference
(LSD) and Bonferroni’s post hoc tests.

Next, we examined whether TREM2 mRNA levels
were associated with cognitive deficits or brain atro-
phy in AD and aMCI. We tested whether TREM2
mRNA levels were associated with cognitive scores
(after adjusting for age, gender, ethnicity and APOE4
status) or brain volume (after adjusting for age, gen-
der, ethnicity, TIV, scanner type and APOE4 status) in
patients with AD and aMCI using Pearson’s correla-
tion or Spearman’s correlation. Correlation analyses
were corrected for APOE4 carrier status because
APOE4 is a potent risk factor for sporadic AD [37],
with carriers showing greater degree of AD-related
atrophy [38, 39] and higher rate of cognitive decline
[40–42]. To examine the association between voxel-
wise grey matter volume (GMV) and TREM2 mRNA
levels in AD and MCI subjects, subject-level GMV
probabilistic maps were entered into a general linear
model with TREM2 mRNA levels as the covariate
of interest and age, gender, ethnicity, scanner type
and APOE4 genotype as nuisance covariates. We
identified grey matter regions whose volumes were
negatively associated with TREM2 levels at p < 0.001
with a cluster size threshold of 100 voxels.

To determine the influence of AD severity (based
on MoCA scores) on TREM2 mRNA levels, AD
patients were further divided into AD group 1 (MoCA
scores ≥21) and AD group 2 (MoCA scores ≤20)
based on the median level of MoCA scores in AD
group. TREM2 levels of each AD subgroup were
then compared to controls. Finally, similar correla-
tion analysis of TREM2 levels with brain volumes
was performed in both AD subgroups. Results were
reported at the significance level of p < 0.05. All anal-
yses were carried out using SPSS 20.0 (SPSS Inc.,
Chicago, IL, USA).

Ethics

Our study was conducted with informed consent
from all individuals and approval was obtained from
the Singhealth Institutional Review Board Ethics
Committee, Singapore.

RESULTS

Clinical, cognitive, and brain structural
characteristics

The demographics and clinical characteristics of
our study cohort and a subset of age- and gender-
matched subjects with available cognitive data and
satisfactory imaging quality are presented in Table 1.
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In the complete sample, AD subjects were signif-
icantly older and had more APOE4 carriers than
aMCI and controls. There were no significant dif-
ferences in terms of gender and ethnicity across
all 3 groups. In the subset cohort, there were no
significant differences in age, gender, and ethnic-
ity across the diagnostic groups. There were more
APOE4 carriers in the AD group than in the other 2
groups. No subjects carried the TREM2 R47H vari-
ant. On tests of global cognition, AD subjects had
lower MMSE and MoCA scores than aMCI and con-
trols. AD subjects performed worse than aMCI and
controls in all neuropsychological domains, includ-
ing episodic memory, attention, executive function,
language and visuospatial function. Amnestic MCI
subjects performed worse than controls across all
cognitive domains (Table 1).

On structural brain measures, AD subjects had sig-
nificantly larger ventricular volumes, with reduced

Fig. 1. TREM2 mRNA expression in peripheral blood is increased
in AD patients compared to healthy controls and aMCI. The val-
ues presented here are mean ± standard error. AD (n = 80) patients
had significantly higher levels of TREM2 mRNA compared to
aMCI (n = 30) and HC (n = 86) after controlling for age, gender
and ethnicity. ∗p<0.05. HC, healthy controls; aMCI, amnestic mild
cognitive impairment; AD, Alzheimer’s disease.

total grey matter, total white matter, and left and right
hippocampal volumes than the other groups. There
were significant differences in total WMH volume
across the three groups but not in the subset of age-
and gender-matched cohort (Table 1).

Group differences in peripheral TREM2 mRNA
expression levels

For the complete cohort, TREM2 mRNA levels
differed across the three groups (F(2,188) = 4.149,
p = 0.017; Fig. 1), controlled for age, gender, and eth-
nicity (mean ± SEM in healthy controls, aMCI, and
AD were 0.81 ± 0.04, 0.74 ± 0.06, and 0.92 ± 0.05,
respectively.) Post-hoc analysis after Bonferroni cor-
rection revealed higher TREM2 mRNA levels in
AD than aMCI (p = 0.012, adjusted p = 0.035) and
controls (p = 0.018, adjusted p = 0.054). There was
no difference in levels between aMCI and controls
(p = 0.495). Subsequent analysis in a subset of age-
and gender-matched participants with adequate cog-
nitive data and satisfactory imaging quality revealed
similar findings (Supplementary Figure 1 and Sup-
plementary Results). ROC analysis was performed
between AD vs healthy controls and AD Group 2 vs
healthy controls (see Supplementary results; Supple-
mentary Figure 4).

Association between TREM2 mRNA expression
levels and cognitive deficits

We found that higher TREM2 mRNA levels cor-
related with lower MMSE (rs = –0.449, p = 0.0003),
MoCA (rs = –0.431, p = 0.001) and episodic mem-
ory (rs = –0.395, p = 0.003) scores in AD and aMCI,
controlling for age, gender, ethnicity and APOE4 sta-
tus (Fig. 2, Supplementary Table 1). No significant

Fig. 2. Correlation between TREM2 mRNA expression and cognitive performance in aMCI and AD. Higher TREM2 mRNA levels correlated
with lower MMSE, MoCA, and episodic memory z-score residuals in AD and aMCI patients, after controlling for age, gender, ethnicity, and
APOE4 status (p < 0.05). MMSE, Mini Mental State Examination; MOCA, Montreal Cognitive assessment; HC, healthy controls; aMCI,
amnestic mild cognitive impairment; AD, Alzheimer’s disease; rs, Spearman correlation coefficient.
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correlation was observed between TREM2 mRNA
levels and other cognitive domains in AD and aMCI
patients.

Associations between TREM2 mRNA expression
levels and brain structure

There was a significant negative correlation
between TREM2 mRNA levels and total grey matter
volume (r = –0.412, p = 0.001) and right hippocampal
volume (r = –0.264, p = 0.040) in AD and aMCI, con-
trolling for age, gender, ethnicity, TIV, scanner type
and APOE4 status (Fig. 3, Supplementary Table 1).

Using whole-brain voxel-wise regression, we fur-
ther found that increased TREM2 levels were
associated with reduced GMV in temporal, parietal
and frontal brain regions in AD and aMCI subjects,
controlling for age, gender, ethnicity, scanner type
and APOE4 status (Supplementary Figure 3, Supple-
mentary Table 2).

TREM2 expression in AD subjects stratified by
MOCA scores

Given that the MoCA as a global cognition test
remains a more sensitive tool for detecting cognitive
impairment with less ceiling effect compared to the
MMSE [43], we stratified AD patients by cognitive
performance according to their total MoCA scores
into two groups based on the median value: Group 1
(MoCA ≥ 21, n = 16) and Group 2 (MoCA ≤ 20,
n = 22). We found more impaired AD patients (Group
2: MoCA ≤ 20) had higher TREM2 mRNA levels
compared to healthy controls (p = 0.025) but the less
impaired AD patients (Group 1: MoCA ≥ 21) did not
(p = 0.360; Supplementary Figure 2), controlling for
age, gender and ethnicity. There was no significant

difference in TREM2 mRNA levels between Group
1 and Group 2 (p = 0.351). Similar results were
observed in the complete cohort of AD subjects
(N = 80).

The finding of increased TREM2 mRNA levels in
more cognitively impaired AD subjects prompted us
to further explore the relationship between TREM2
expression, cognition and brain structural measures
in these more severe AD patients. We found that
higher TREM2 mRNA expression correlated with
lower total grey matter (r = –0.463, p = 0.030), left
hippocampal (r = –0.479, p = 0.024), and right hip-
pocampal (r = –0.414, p = 0.055) volumes (Fig. 4 and
Supplementary Table 1) in Group 2, after control-
ling for age, gender, ethnicity, TIV, scanner type, and
APOE4 status. This is consistent with our primary
results.

DISCUSSION

In this study, we measured peripheral TREM2
mRNA expression levels in AD, aMCI and control
subjects, and found that levels were higher in AD
compared to aMCI and controls. Higher TREM2
levels in AD may reflect TREM2 upregulation in
the brain as part of compensatory mechanisms by
microglia in response to amyloid deposition and
increased phagocytic demands from neuritic pathol-
ogy and apoptotic cells [5, 6]. Given that AD
continues to progress regardless, TREM2 overex-
pression may, in fact, be an insufficient attempt to
repair brain tissue [5], and further analyses reveal that
our more cognitively impaired AD patients (but not
less impaired AD) had higher TREM2 levels than
healthy controls.

Fig. 3. Correlation between TREM2 mRNA expression and total grey matter volume, and hippocampal volume in aMCI and AD. Higher
TREM2 mRNA levels correlated with smaller total grey matter volume and right hippocampal volume residuals, controlling for age, gender,
ethnicity, total intracranial volume, scanner type and APOE4 status. aMCI, amnestic mild cognitive impairment; AD, Alzheimer’s disease;
GMV, grey matter volume; HIPP, hippocampus; r, Pearson correlation coefficient.
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Fig. 4. Correlation between TREM2 mRNA levels with total grey matter volume and hippocampal volumes in AD group 2. Higher TREM2
mRNA levels correlated with smaller total grey matter volume, left and right hippocampal volume residuals in AD patients with more
impaired global cognition (Group 2: MoCA scores ≤ 20), controlling for age, gender, ethnicity, total intracranial volume, scanner type, and
APOE4 status. AD, Alzheimer’s disease; GMV, grey matter volume; HIPP, hippocampus; r, Pearson correlation coefficient.

Recent evidence suggests that TREM2-expressing
microglia may play protective roles by appearing in
the early stages of amyloid deposition, in attempts
to limit diffusion and toxicity of amyloid plaques
[44]. Hence, we hypothesized that aMCI would show
higher levels compared to controls, but found no dif-
ferences between the two groups. A recent study by
Guedes et al. [12] reported higher TREM2 mRNA
levels in MCI compared to AD and controls. Their
MCI subjects were generally older than our cohort
and displayed relatively similar degree of cognitive
impairment as our AD subjects according to MoCA
scores.

Exploring TREM2 and cognition, we found that
higher TREM2 levels in aMCI and AD corre-
lated with lower MMSE, MoCA and episodic
memory z-scores after controlling for age, race,
gender and APOE4 status. Earlier studies reporting
higher peripheral TREM2 levels in AD had con-
flicting results using MMSE scores, with Hu and
colleagues showing negative correlation [10], and
another reporting no correlation with MMSE at all
[11]. Compared to the initial study by Hu et al.,
our study was novel in including not only aMCI,
but also subjects with mild AD, as reflected by their
higher MMSE scores (mean (SD) 22.1 ± 5.3). Our
study adds further novelty by including additional
correlation with five individual cognitive domains on
detailed neuropsychological testing, as well as addi-
tional correlation with structural neuroimaging using
whole-brain VBM analysis. Our findings of signifi-
cant correlation between higher TREM2 levels and
lower episodic memory scores, along with reduced
GMV in temporal, parietal and frontal regions in
aMCI and AD subjects may be reflective of increased

TREM2 upregulation as part of AD pathophysiolog-
ical processes.

As the first study to explore peripheral TREM2
expression with brain measures, we found that higher
TREM2 levels in aMCI and AD correlated with
lower overall grey matter and right hippocampal
volumes. Within the AD group, more cognitively
impaired subjects had TREM2 levels correlating with
hippocampal and total grey matter loss, reinforc-
ing our primary results. Overall, using cognitive and
imaging measures, our findings suggest that periph-
eral TREM2 mRNA expression levels appear to
reflect poorer episodic memory and hippocampal
atrophy in AD and aMCI patients. These findings may
be explained by consistent evidence in humans and
AD mouse models of higher TREM2 expression in
the hippocampus occurring in parallel with increased
cortical amyloid burden [3, 5, 6]. Recent results
have also shown that TREM2 mRNA levels are
increased across Braak stages, showing correlation
with markers of neurodegeneration [6, 8], consis-
tent with our findings of more impaired AD subjects
showing higher TREM2 levels and greater correla-
tion with hippocampal atrophy than less impaired AD
patients. Conversely, there was no significant associ-
ation between TREM2 and WMH burden.

Possible factors driving the increase in TREM2
mRNA expression in AD peripheral blood remains
to be answered. The report by Hu and colleagues
finding increased TREM2 mRNA levels on mono-
cytes [10] is of interest, given that circulating
monocytes are able to infiltrate the brain in AD
in response to neuronal dysfunction caused by
amyloid deposition [45]. In neurodegenerative con-
ditions like AD [46], resident microglia may become
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dysfunctional, with transgenic mice models showing
microglia-depleted brain regions being repopulated
with new peripherally-derived monocytes express-
ing high CD45 and CCR2 levels taking up long-term
CNS residence to assume properties of dysfunctional
microglia [47]. Recent research showing TREM2-
positive microglia surrounding amyloid fibrils in a
protective effort found that these microglia appear
to be brain-derived [44] and not from peripheral
myeloid cells as suggested previously [48]. Using
parabiosis methods to test the brain for cellular intrud-
ers, Wang and colleagues found minimal exchange of
monocytes between blood and brain [44]. This con-
trasts with previous reports where TREM2-positive
microglia appeared to express the peripheral myeloid
cell marker CD45 and lack the brain microglia
P2RY12, suggesting their peripheral origin [45, 48].
Of note, monocyte chemoattractant protein (MCP)-1
is one of the key chemokines regulating migration and
infiltration of monocytes/macrophages, and is pro-
duced by amyloid-induced activated microglial cells
that trigger neuro-inflammatory monocytes in the
inflamed brain through CCR2 (C-C chemokine recep-
tor type 2), a receptor for MCP-1. Both CCR2 and
TREM2 have been directly implicated in AD pathol-
ogy, and deficiency in CCR2 in APP/PS1 transgenic
mice appears to exacerbate amyloidosis [49, 50];
whereas transplantation of CCR2-competent cells
into APP/PS1/CCR2-/- mice restore cognitive func-
tions [51]. Studies have also shown that both CCR2
and TREM2 mRNA levels were increased in AD
blood-derived monocytes [10, 12], which were asso-
ciated with higher uptake of amyloid fibrils. Thus, we
suspect that increased expression of TREM2 periph-
erally could possibly be via the MCP-1/CCR2 axis,
where amyloid-induced activated microglia release
MCP-1, which then binds to CCR2 receptors on
monocytes, promoting their recruitment from the
periphery to the brain. Ultimately, whether increased
activation and expression of TREM2 in the AD brain
correlate with higher peripheral levels, remains to be
determined, even if there are doubts to its plausibility.

One limitation of our study is the lack of corre-
sponding TREM2 protein level measurement. This
may be less important given that correlation between
mRNA expression and corresponding protein levels
vary according to various biological and technical
factors [52], with merely ∼40% explanatory power
across many genome-wide correlation studies [53].
We were unable to perform fluorescence-activated
cell sorting (FACS) flow cytometry at the time of
sample collection, which would have provided more

information on the cell types responsible for the
increase in TREM2 mRNA levels. Additionally, we
note that while there are certainly many other external
(e.g. pharmacological) and internal (e.g. metabolic,
infective) factors that may potentially contribute to
altered peripheral TREM2 mRNA expression levels
in our subjects, they were to our knowledge not suffer-
ing from infective or inflammatory conditions, or on
treatment with anti-inflammatory medication at the
time of blood sampling. However, future studies on
the relationship between TREM2 and inflammation
are needed. Lastly, future studies with larger sam-
ples are needed to investigate the role of TREM2 in
the pre-dementia stage and the relationships between
TREM2 expression levels and AD cerebrospinal fluid
biomarkers such as amyloid/tau levels.

Conclusion

We found that TREM2 levels were higher in
AD compared to aMCI and controls, and report
novel findings of higher levels correlating with
worse cognitive performance (particularly episodic
memory) and lower hippocampal volumes. These
results provide evidence for the potential role of
peripheral TREM2 expression as a non-invasive AD
biomarker. These results need to be validated in
larger, independent cohorts, including more MCI
subjects. Additional studies correlating peripheral
TREM2 levels with CSF biomarkers, investigating
longitudinal variation in TREM2 expression over
time, as well as measurement of peripheral TREM2
in other neurodegenerative diseases are required.
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