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A B S T R A C T

Spatial working memory (SWM) relies on the interplay of anatomically separated and interconnected large-scale
brain networks. EEG studies often observe load-associated sustained negative activity during SWM retention. Yet,
whether and how such sustained negative activity in retention relates to network-specific functional activation/
deactivation and relates to individual differences in SWM capacity remain to be elucidated. To cover these gaps,
we recorded concurrent EEG-fMRI data in 70 healthy young adults during the Sternberg delayed-match-to-sample
SWM task with three memory load levels. To a subset of participants (N¼ 28) that performed the task properly
and had artefact-free fMRI and EEG data, we employed a novel temporo-spatial principal component analysis to
derive load-dependent negative slow wave (NSW) from retention-related event-related potentials. The associa-
tions between NSW responses with SWM capacity were divergent in the higher (N¼ 14) and lower (N¼ 14) SWM
capacity groups. Specifically, larger load-related increase in NSW amplitude was associated with greater SWM
capacity for the higher capacity group but lower SWM capacity for the lower capacity group. Furthermore, for the
higher capacity group, larger NSW amplitude was related to greater activation in bilateral parietal areas of the
fronto-parietal network (FPN) and greater deactivation in medial frontal gyrus and posterior mid-cingulate cortex
of the default mode network (DMN) during retention. In contrast, the lower capacity group did not show similar
pattern. Instead, greater NSW was linked to higher deactivation in right posterior middle temporal gyrus. Our
findings shed light on the possible differential EEG-informed neural network mechanism during memory main-
tenance underlying individual differences in SWM capacity.
Introduction

Working memory capacity is an important building block in normal
cognitive functions (Constantinidis and Klingberg, 2016). It is thus not
surprising that working memory capacity underlies individual differ-
ences in normal cognitive development (Kane and Engle, 2002) and
disease-related changes (Luck and Vogel, 2013; Park and Holzman,
1992). More specifically, individual differences in holding spatial infor-
mation in an active state for seconds, named spatial working memory
(SWM) capacity, have been documented. Often reflected in difference in
brain activities, individual differences in SWM capacity were related to
development of arithmetic cognition (Ashkenazi et al., 2013), widened
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among the elderly (Nagel et al., 2009), hindered cognitive declines in
normal ageing (Anguera et al., 2010), and pathological changes related
to neuropsychiatric disorders (Fusar-Poli et al., 2010; Lenartowicz et al.,
2014; Park and Holzman, 1992). Understanding the neural substrates
supporting SWM capacity can hence shed light on the mechanisms
behind individual differences in both normal development and
disease-induced deviations.

Individual differences may stem from various phases of SWM pro-
cessing including encoding, retention, and retrieval. Here we focused on
the retention phase where the location of the stimulus could no longer be
seen. EEG studies using the Sternberg delayed-match-to-sample SWM
task (Sternberg, 1966) often observe sustained negative activity during
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retention, and this negative slow wave (NSW) was thought to be sup-
ported by neural synchrony between fronto-parietal and occipital regions
(Palva et al., 2010). The amplitude of NSW can be modulated by SWM
load, with a greater load inducing larger NSW during retention (Drew
et al., 2006). Interestingly, this modulation of NSW amplitude is closely
related to individual differences in SWM capacity, and working memory
load exceeding individual capacity did not lead to further increase in the
NSW amplitudes (Vogel and Machizawa, 2004). It is thus a useful mea-
surement of individual differences in SWM capacities.

While EEG recordings contain valuable time-sensitive information,
fMRI studies can also offer unique perspective (Jorge et al., 2014). Suc-
cessful retention of the spatial information relies on cognitive compo-
nents including selective attention and distractor inhibition (Gazzaley
and Nobre, 2012; Unsworth et al., 2014). Previous task-based fMRI
studies have suggested the involvement of both fronto-parietal network
(FPN) and sensory cortices in supporting SWM, with the former relating
to general executive control and higher working memory capacity
(Linden et al., 2003; Rottschy et al., 2012; Todd and Marois, 2004) and
the latter supporting the representations of the memoranda (Ku et al.,
2015; Sreenivasan et al., 2014a, 2014b). Recent computational methods
have also suggested that visual-spatial information can be reconstructed
based on activity information in the FPN (Ester et al., 2015; Sprague
et al., 2014). Particularly, reconstruction was successful for the remem-
bered but not for the forgotten locations (Sprague et al., 2014). In
addition to the FPN, the task-negative default mode network (DMN) has
also been shown to be associated with working memory performance,
exhibiting greater deactivation with greater working memory load
(Gordon et al., 2012). The FPN and the DMN, referred to respectively as
the task-positive and task-negative networks, have both been linked to
individual differences in working memory capacity (Burzynska et al.,
2011; Darki and Klingberg, 2015; Ekman et al., 2016; Gordon et al.,
2012; Vermeij et al., 2014). Specifically, for a visual-spatial working
memory task consisting of encoding, retention, and retrieval phases, the
anti-correlation between the networks was most prominent during the
retention phase (Piccoli et al., 2015). Additionally, modularity and
integration of brain networks have been linked to working memory ca-
pacity (Alavash et al., 2015; Stevens et al., 2012). This further encour-
aged us to examine the neural responses during the retention phase in
query of SWM individual differences, in which interaction of these brain
networks may selectively maintain the memory presentation and sup-
press interference that potentially corrupts the memory (Gordon et al.,
2012).

While EEG studies provide the time courses of the related brain re-
sponses, fMRI studies offer the spatial information of the relevant brain
networks. Studies using concurrent recording of EEG and fMRI should
thus shed light on how the brain temporally and spatially responds to
spatial working memory loads. Thus far, such attempts were mostly from
studies integrating fMRI with the frequency domain of the EEG (e.g.,
(Michels et al., 2012; Miller et al., 2008; Mizuhara et al., 2015; Sammer
et al., 2007)), while integration of fMRI and event-related potential (ERP)
tend to focus on the encoding and/or the retrieval phase (Galashan et al.,
2015; Hoffmann et al., 2014; Marchand et al., 2006; Miller et al., 2008;
Rawdon et al., 2013; Zhang et al., 2015). The former has identified
different functions of gamma, theta and alpha band oscillations. The
latter pointed to the importance of the attention effect (e.g., the reduced
P3 in higher load (Zhang et al., 2015). However, concurrent EEG-fMRI
studies have yet to clarify the temporo-spatial properties of the brain
responses in the retention phase. It remains to be investigated how EEG
responses during retention phase are related to task-positive and
task-negative brain networks.

To cover these gaps, we employed concurrent EEG-fMRI recording to
examine both EEG NSW and blood-oxygen-level dependent (BOLD) re-
sponses during the Sternberg delayed-match-to-sample SWM task in
healthy young adults. Using temporo-spatial principal component anal-
ysis (PCA), we sought to identify load-related NSW component during
retention and examine its association with individual differences in SWM
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capacity. Furthermore, we hypothesized that the NSW component would
be related to BOLD activation in the FPN and sensory networks and
deactivation in the DMN. Nevertheless, this association might vary
depending on the SWM capacity.

Methods

Participants

Healthy young participants were recruited both within the National
University of Singapore and community, based on the following re-
quirements: (1) age between 18 and 35; (2) Chinese ethnicity; (3) right
handed; (4) have no history of psychiatric or neurologic disorders; (5) not
pregnant; (6) normal or corrected to normal vision (with non-coloured
contact lenses); (7) no metallic objects in the body; (9) no long-term
medications of antipsychotics, anxiolytics, anti-depressants; (10) no
discomfort in a confined space. Ethics approval was obtained from the
National University of Singapore Institutional Review Board (NUS-IRB).
The study was conducted in accordance with the Declaration of Helsinki.
Written informed consent was obtained. For participants below the age of
21, parental consent was also obtained.

We recorded concurrent EEG-fMRI data during the SWM task from 70
participants. Criterion for exclusion are as follows: (1) behavioural
response accuracy in load 1 condition was lower than 85%; (2) EEG data
did not fulfill quality requirements (see EEG data preprocessing for de-
tails); and (3) fMRI data did not pass quality control (see fMRI data
preprocessing for details). Our behaviour criterion was based on the
performance at the load 1 condition, which should be the easiest among
the three task conditions. We used accuracy at the easiest condition to
screen out participants who did not perform the task properly. Nine
participants failed the behavioural performance requirement. Out of the
remaining 61 participants, 48 participants had good quality fMRI data,
among which 31 participants (mean age¼ 24.9, SD¼ 5.1, 16 females)
had good EEG and fMRI data. We first determined the NSW component
from these 31 participants.

Spatial working memory task

We used the Sternberg delayed-match-to-sample task paradigm
(Sternberg, 1966) consisting of three phases in each trial: encoding,
retention, and probing. Unlike other paradigms such as the N-back task
that led to overlapping of the encoding, retention and retrieval responses
even in the EEG time domain, the Sternberg delayed-match-to-sample
task paradigm allows a better separation of the retention phase in time
without other distracting stimuli. Each trial began with a fixation cross in
the center of the screen lasting for 500ms. Depending on the load con-
dition, 1, 3 or 5 white dots was/were presented sequentially on a 5-by-5
grid with 24 possible location of appearance (excluding central fixation),
each lasting for 500ms. A fixation cross was then displayed for 3000ms
(retention phase), which was followed by a red dot presented for 2000ms
(probing phase). Participants were required to indicate whether the red
dot appeared at a previously occupied location. Between trials, a blank
black screen was presented with a jittered inter-trial interval of
500–3500ms. Each load consisted of 30 trials across 3 runs. Behavioural
performance was indexed using Cowan's K (Cowan, 2001; Cowan et al.,
2005), which is formulated as the difference between hit rate and false
alarm rate, multiplied by the total number of presented items (i.e., load
levels). In calculating K, it is assumed that if an individual can hold K
items in memory given S items, task performance should be correct on
K/S of the trials (i.e. If K is 4, and S is 5, it is expected that hit rate should
be 80%). In the current formulation, false alarm rate is subtracted from
the hit rate to account for guessing (Vogel et al., 2005). As K corresponds
to a measure of capacity, the maximum K (Kmax) across the three load
levels was used.

To investigate the association between EEG responses and individual
differences in SWM capacity, we categorized participants into higher and
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lower SWM capacity groups by applyingmedian split on the Kmax (Vogel
et al., 2005). Based on the sample of 31 participants who fulfilled the
behaviour, EEG and fMRI criteria, the median of Kmax was 3.92 with 16
and 15 participants in the higher and the lower capacity groups
respectively.

Data acquisition

Participants underwent a concurrent EEG-fMRI scanning session
using 12-channel head coil on a 3T Siemens Tim Trio system (Siemens,
Erlangen, Germany). The spatial working memory task fMRI scan con-
sisted of 3 runs of echo planar imaging (EPI) volumes (TR/TE¼ 2000/
30ms, voxel size¼ 3.0� 3.0� 3.0mm3, FOV¼ 192� 192mm2, 36 axial
slices, flip angle¼ 90�, 192 vol, bandwidth¼ 2112Hz/pixel). High-
resolution T1-weighted structure images (TR/TE/TI¼ 2300/2.98/
900ms, voxel size¼ 1.0� 1.0� 1.0mm3, FOV¼ 256� 240mm2, 192
continuous sagittal slices, flip angle¼ 9�, bandwidth¼ 240Hz/pixel)
were acquired using magnetization-prepared rapid gradient echo
(MPRAGE) sequence for co-registration.

In parallel to fMRI recordings, concurrent EEG data were acquired
using the 64-channel MRI-compatible EEG system (Brain Products
GmpH, Germany) with proper synchronization and triggering. Positions
of electrodes were based on the International 10–10 System (Jurcak
et al., 2007) with online reference to FCz. The sampling frequency was at
5 KHz. One ECG electrode was placed at the fifth intercostal space on the
midclavicular line at the back, while an EOG electrode was placed below
left eye, vertically aligned to the F1 electrode. We also ensured that the
impedance at all electrodes were below 10 KW. Helium-pump was
switched off during concurrent EEG-fMRI recording to avoid related ar-
tefacts (Nierhaus et al., 2013).

EEG data preprocessing

Following previous work (Allen et al., 2000, 1998; Tong and Thakor,
2009), we removed both gradient artefacts and cardioballistic artefacts
using BrainVision Analyzer 2.0 (BrainProducts GmbH). For gradient arte-
facts, a representative template artefact was calculated and subtracted
from a sliding window of 21 TRs (Allen et al., 2000). The EEG data were
then down sampled to 250Hz. For cardioballistic artefacts, ECG episodes
were first identified by the software using the amplitude and
cross-correlation criteria peaks (Tong and Thakor, 2009). The identified R
peaks were then visually verified/adjusted by trained researchers. Delay
time between the ECG episodes and the cardioballistic artefacts were
calculated using global field power based on the entire dataset. Car-
dioballistic artefact correction was done with a sliding window of 21 TRs
(Allen et al., 1998). Further EEG data preprocessing was performed using
in-house scripts based on EEGLab (version 13.4.3b) in Matlab (2010b). We
used CleanLine to remove line noise. The low-pass filter at 90Hz was
applied followed by high-pass filtering at 0.1 Hz. Motion artefacts and
noisy channels were rejected before performing Independent component
analysis (ICA) to remove eye movement-related artefacts and the
remaining of the cardioballistic artefacts. Following channel interpolation,
the data were re-referenced to the average of the scalp channels.

Epochs were identified with data time-locked to the onset of the
retention period. Data in the 200ms before retention onset served as the
baseline, while the data time window was 3 s after retention onset. After
baseline correction, epoch data were subjected to visual inspection to
remove remaining noises. Only correct trials were included for further
analyses. To identify the NSW ERP, we then re-reference the epoch data
to the average of mastoids (TP9 and TP10).

EEG data from each participant were included for further analyses if
all of the following requirements were met: (1) At least 70% of the epochs
remained in the data after preprocessing; (2) Less than 33% of the
channels were rejected during preprocessing; and (3) ERP was detected
in the data (p� 0.05) using the randomization-based procedure (Koenig
et al., 2013).
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Temporo-spatial principal component analysis

Retention EEG negativities can be a combination of NSW and other
load-dependent ERP. These ERPs can be differentially affected by
working memory loads and are related to different cognitive components
(Fukuda et al., 2015; Zhou and Thomas, 2015). For example, NSW and P3
shared overlapping scalp distribution and temporal profiles, but are
differentially affected by working memory load, with the former showing
increasing component amplitude, and the latter showing decreasing
component amplitude with increasing load (Zhang et al., 2015; Zhou and
Thomas, 2015). Fortunately, recent studies of visual working memory
demonstrated that temporal PCA could tease apart these temporally
overlapping components and identify different components related to
loads and SWM capacity (Dien, 2012; Pinal et al., 2014; Zhou and
Thomas, 2015). Temporo-spatial PCA has been successful in identifying
spatially and temporally overlapping components for other task para-
digms such as the emotion regulation task (Liu et al., 2016) and the
odd-ball task (Dien, 2012). Here, we used the temporo-spatial PCA
methods to identify the NSW component related to both load and SWM
capacity.

We applied temporo-spatial PCA (Dien, 2012; Kayser and Tenke,
2003; Liu et al., 2016) on ERPs from each participant and condition (see
flowchart in Supplementary Fig. 1). Temporal PCA was first performed
on the average ERP to reduce the data to the NSW-related time course.
Here, time points were the variables, while channels, conditions and
participants were the observations (i.e., one observation refers to data in
one channel in one condition in a particular participant). Promax rotation
method was used to separate variance orthogonally (Dien, 2010). Vari-
ance accounted by each temporal component was calculated and sorted.
Only temporal components that explained more than 1% of the total
variance were considered. We selected the temporal components that
shared similar time courses with the NSW ERP. Spatial PCA was then
performed separately on the factor scores (FS) obtained from each tem-
poral component, which represented the variance of each channel, con-
dition and participant in regard to the component.

For spatial PCA, channels were the variables, while conditions and
participants were the observations. We performed spatial PCA in two
steps. In step one, we first randomised the FS of the temporal component
to generate a randomised dataset. We performed spatial PCA on the
randomised data set equating the number of dimensions to the number of
channels and calculated the variance explained by the resulted compo-
nents. We repeated this randomization procedure 500 times, and calcu-
lated the average explained variance across randomization. We also
performed a spatial PCA on the original FS data equating the number of
dimensions to the number of channels and calculated the explained
variance of each resulting component. We then used scree plot to identify
the number of spatial components based on the original data that
explained more variance than the randomization averages. In step two,
spatial PCA was again performed on the original FS data, but with PCA
dimensions reduced to the number found in the scree plot. Infomax was
then used as the rotation method to separate variance (Dien, 2010). The
resulting temporo-spatial components were sorted based on the
explained variance, where component explaining the largest amount of
variance was selected. For the selected component, we obtained an FS for
each condition per participant for statistical analyses. We used the nlme R
package to test the load effect on the FS and the multcomp R package for
the repeated-measurement post hoc analyses.

EEG-capacity association

We first examined load-related changes in EEG response by calcu-
lating an FS slope for each participant by regressing his/her FS against
SWM loads. Specifically, we fitted a linear line to the FS for each
participant, and used the slope as an estimate of load-related FS changes.
The larger the absolute values of the FS slope, the more the participant's
EEG responses changed as SWM load increased.
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To further examine the difference between the higher and lower SWM
capacity groups, we performed a linear regression analysis on the Kmax
against FS slopes with group assignment as the variable of interest. In
particular, we are interested in the NSW during retention and its asso-
ciation with both task capacity and brain (de)-activations (see section
2.8). The NSW was expected to be sustained negative activity during
retention, of which amplitudes increase with memory loads until
reaching capacity. Our participants were from the healthy young adult
population and their Kmax scores were all above 2. Thus, when more
negative FS indicates larger NSW amplitude, we expected that NSW
amplitude would show load-related effect (i.e., negative FS slope).
Though the NSW component was identified based on the analyses across
all participants, it was still possible that a minority of individuals did not
elicit the typical load-related NSW. Therefore, to minimize such
confounder, we excluded participants whose FS slopes were in opposite
polarity (i.e., positive FS slope when more negative FS indicates larger
NSW amplitude) and beyond 1.5 standard deviation from the group FS
slope mean (2 higher capacity and 1 lower capacity participants). The
remaining participants (N¼ 28) were used for association analyses of
NSW component with task capacity and fMRI activation/deactivation
patterns. There were no differences in age (p¼ 0.911) and gender (chi-
square test Х2¼ 1.286, p¼ 0.257) between the higher and lower ca-
pacity groups among these 28 participants.

fMRI data preprocessing

The SWM task fMRI data was preprocessed using the FMRIB Software
library (FSL) (Jenkinson et al., 2012) and Analysis of Functional Neu-
roImages software programme (Cox, 1996), following the standard pro-
tocols in our previous work (Ng et al., 2016; Wang et al., 2016). Briefly,
the steps are: (1) dropping the first 5 volumes where magnetic field has
yet stabilized; (2) slice time correction to adjust interlaced scanning time
difference, oblique, and orientation in space; (3) motion correction
producing 6 motion parameters used later in the analyses; (4) skull
stripping; (5) spatial smoothing at full-width half maximum (FWHM) of
6mm; and (6) coregistration with the structural image using
Boundary-Based Registration (BBR), and nonlinear (FNIRT) registration
to the Montreal Neurological Institute (MNI) 152 standard space. For the
structural data, we followed the following steps: (1) image noise reduc-
tion (SUSAN); (2) skull stripping using the Brain Extraction Tool (BET);
(3) linear (FLIRT) and FNIRT registration to the MNI 152 standard space;
and (4) segmentation of the brain into grey matter, white matter and CSF
compartments.

Trained researcher visually inspected co-registration and normaliza-
tion quality for all participants to ensure successful co-registration of the
fMRI data to the T1-weighted structural images and to the MNI standard
space. Importantly, one of the common sources of artefacts in the fMRI
data is head motion during the scans. Therefore, for each volume in the
fMRI data, we also calculated the absolute displacement from the refer-
ence volume and the relative displacement between volumes. We then
identified the maximal absolute displacement and the maximal relative
displacement for each participant as estimates of head motion. Since our
original voxel size is 3mm isotropic, we set the maximal absolute
displacement cut-off at 3 mm and the maximal relative displacement cut-
off at 1mm to only include participants with limited head motion. After
excluding participants whose data were beyond the cut-off, the average
motion in our data sample is 0.57mm (SD¼ 0.45mm) of maximal ab-
solute displacement and 0.38mm (SD¼ 0.25mm) of maximal relative
displacement.

EEG-fMRI associations

Preprocessed functional data that passed quality control were
analyzed using whole-brain voxel-wise general linear model (GLM)
implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). At the first
level analysis, activations in the retention phases of each load were
4

modeled together with covariates of the six motion parameters. Correct
and error trials were modeled separately. Event duration was set to be the
same as the phase duration. Contrast images of the retention phase of the
correct trials in each load condition was taken from each participant and
carried forwards to the second level analysis. At the second level analysis,
retention images were regressed against FS of the NSW component along
with covariates of age and gender. Contrast images from the second level
analyses were thresholded at the voxel-wise significance level of uncor-
rected p< 0.001 and cluster-wise significance level of family-wise error
(FWE) corrected p< 0.05. Association analyses were done within the
higher and lower capacity groups. We also performed a GLM analysis on
the deactivations using the same variables of interest and covariates at
the first level and repeated the same second-level analyses on the deac-
tivation contrasts.

Results

Load-related NSW PCA component

Preprocessed EEG data were averaged across trials but within chan-
nels, conditions and participants to obtain the NSW ERP. Fig. 1 showed
the average NSW ERP components across all participants separated by
memory load. Temporo-spatial PCA was conducted based on the ERP
data. We obtained two temporal principal components (PCs) from the
temporal PCA (Fig. 2), each of which explained more than 1% of vari-
ance. Among the obtained temporal components, we only considered
those that explained more than 1% of the total variance. In total, six
temporal components fulfilled this variance criteria. One component was
restricted within the 200ms baseline period. One component spiked at
the onset of retention, while another component occupied the first
100ms after retention onset, both of which were possibly related to offset
of the dot from the encoding period. Another component spiked at the
end of the retention period, possibly linked to probe onset. The
remaining two temporal components (T1 and T2) spread across almost
2 s during retention period, with T2 occupying the first 2 s and T1
dominating the last 2 s of the retention period (Fig. 2. We labeled the
component using letter and number. T indicates the component was
obtained from the temporal PCA; number 1, 2, etc. indicate the compo-
nent explained the largest, the second largest, etc. variance). Spatial PCA
was then conducted on each of these two temporal PCs. The spatial
components that explained the largest variance were selected.

As a result, we obtained two temporo-spatial PCs with anterior-
posterior topographic scalp distribution (Fig. 2A). One peaked within
the first second (T2S1) after retention onset, while the other loaded
heavily towards the end of the retention phase (T1S1) (S indicates the
component was obtained from the spatial PCA). T1S1 explained the
largest variance of the temporal component T1, which was also the
largest component from the temporal PCA. T2S1 explained the largest
variance of the temporal component T2, which was the second largest
component from the temporal PCA. Based on the time courses and the
spatial distributions of the PCs, T1S1 is likely to be the NSW component.

Since the NSW ERP component is load-related, we further analyzed
the FS from each temporo-spatial PCs with load as variable of interest.
Only T1S1 showed significant main effect of load (F (2, 60)¼ 4.648,
p¼ 0.013). Both load 3 (z¼�2.682, adjusted p¼ 0.020) and load 5
(z¼�2.596, adjusted p¼ 0.023) had greater negative FS than load 1. No
significant difference between load 3 and load 5 was found (z¼ 0.086,
adjusted p¼ 0.996). There was no significant load effect on T2S1 (F (2,
60)¼ 2.413, p¼ 0.098). This confirmed that the NSW component iden-
tified (T1S1) is related to memory load.

Load-related NSW increase was differentially associated with SWM
capacity in higher and lower capacity groups

To test whether the load effect on the NSW component amplitudes
differed between capacity groups, we analyzed the effect of memory

http://www.fil.ion.ucl.ac.uk/spm/


Fig. 1. ERP responses during retention. (A) Topographic scalp distribution of
the ERP responses during retention. Blue colour indicates negative amplitudes
and red colour indicates positive amplitudes in μVolt. ERP amplitudes between
2000ms and 3000ms after retention onset were averaged for each SWM load.
As loads increased, negativity became more salient over the fronto-parietal scalp
area. (B) ERP responses at the Fz channel. ERP responses averaged across all
participants within each load at the Fz channel time locked to the onset of
retention period. Sustained negative activities developed during retention and
showed higher amplitudes towards the end of retention. (C) ERP responses at
the Oz channel. ERP responses averaged across all participants within each load
at the Oz channel time locked to the onset of retention. For Fig. 1B and C, thick
solid blue lines show the ERP at load 1; thin dotted green lines show the ERP at
load 3; and thin solid red lines show the ERP at load 5. Abbreviations:
ERP¼ event-related potential, NSW¼ negative slow wave, SWM¼ spatial
working memory.

Fig. 2. Amplitudes of the NSW component from temporo-spatial PCA were
different between SWM loads. (A) Temporal loadings and scalp distribution of
the PCA components. Only the NSW component (T1) was related to SWM loads.
(B) NSW component projection to the Fz channel. (C) NSW component projec-
tion to the Oz channel. FS at load 3 and 5 were significantly different from FS at
load 1. For both Fig. 2B and C, thick solid blue lines shows the component
projection at load 1; thin dotted green lines shows the component projection at
load 3; and thin solid red lines shows the component projection at load 5. Ab-
breviations: NSW¼ negative slow wave, PCA¼ principal component analysis,
SWM¼ spatial working memory, FS¼ factor score, T1¼ the temporal compo-
nent that explained the largest variance, T2¼ the temporal component that
explained the second largest variance.
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loads and capacity groups on FS using this sample of 28 participants. The
interaction between capacity groups and loads was not significant (F (2,
52)¼ 0.099, p¼ 0.906), and neither was the main effect of groups sig-
nificant (F (1, 26)¼ 0.102, p¼ 0.752). The main effect of loads was
significant (F (2, 52)¼ 14.391, p< 0.001). Both load 3 (z¼�4.545,
adjusted p< 0.001) and load 5 (z¼�4.888, adjusted p< 0.001) had
greater negative FS than load 1. No significant difference between load 3
and load 5 was found (z¼�0.343, adjusted p¼ 0.937).

More importantly, we found significant FS slope-by-group interaction
effect on Kmax (p¼ 0.005), as well as significant main effect of FS slopes
(p¼ 0.010) and participant groups (p¼ 0.012) on Kmax. Steeper FS
slopes were correlated with higher Kmax in higher capacity group
(adjusted R2¼ 0.325, p¼ 0.020, Fig. 3B), while steeper FS slopes were
correlated with lower Kmax in the lower capacity group (adjusted
R2¼ 0.257, p¼ 0.037, Fig. 3A).

We repeated the analyses using the new cut-off (median of
Kmax¼ 3.67 based on all participants (N¼ 61) who fulfilled the task
accuracy criteria regardless of their imaging data quality). Our main
findings remained unchanged (see Supplementary Results 2). Consistent
with the interaction effect, we also found a significant quadratic rela-
tionship between Kmax and FS slopes across all participants (Supple-
mentary Fig. 2).
5

Different NSW-related brain networks were recruited by higher and lower
capacity participants

To examine the difference in brain networks recruited by the higher
and lower capacity participants, we compared whole-brain voxel-wise
activation and deactivation across SWM loads in each capacity group.
Higher activation in the FPN and more deactivation in DMN for higher
SWM loads were observed for the higher capacity participants (Supple-
mentary Table 1). Though load-related FPN activation differences were
also found for the lower capacity participants, deactivation in DMN were
not significantly related to load (Supplementary Table 2).

Importantly, we further examined the brain networks contributing to
the NSW component related to SWM loads, by looking at the associations
of the NSW component with the fMRI-based activation and deactivation
patterns in higher and lower capacity groups. For the high capacity
participants, whole-brain voxel-wise GLM regression against NSW FS
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revealed that greater negative FS (i.e., larger NSW component amplitude)
was associated with higher activations in the bilateral parietal areas
(FPN) (Fig. 4A and B) and deactivation in the medial prefrontal and mid-
cingulate areas (DMN) (Fig. 4C and D, Supplementary Table 3). In
contrast, for lower capacity group, no such association was found.
Instead, greater negative FS was related to higher deactivation in the
right middle temporal gyrus (Fig. 5, Supplementary Table 4). We
repeated the analyses using the new cut-off (median of Kmax¼ 3.67
based on all participants (N¼ 61) who fulfilled the task accuracy criteria
regardless of their imaging data quality). Our main findings remained
unchanged (see Supplementary Results 2, Supplementary Tables 6 and 7,
Supplementary Figs. 3 and 4).

Discussion

Between the phase of information encoding and the time to retrieve
the information lies the important phase of retention, where information
that is no longer present in the external environment must be carried in
mind. We recorded concurrent EEG-fMRI responses when participants
performed a spatial working memory task to examine retention-related
sustained negative response and the associated brain networks underly-
ing individual differences in SWM capacity. Specifically, using temporo-
spatial PCA method, we isolated the NSW principle component during
retention that elicited larger amplitudes for higher SWM loads. Load-
related NSW changes were associated with both SWM capacity and
brain activation/deactivations differently in higher and lower capacity
participants. For higher SWM capacity participants, stronger activation in
the FPN and more deactivation in the DMN correlated with larger NSW
amplitudes. Larger NSW increase with loads supported better task ca-
pacity. In contrast, for lower SWM capacity participants, NSW amplitudes
were linked to neither FPN nor DMN. Instead, NSW amplitudes changed
with right MTG deactivation. Larger load-related changes in NSW were
linked with worse task capacity. Our results suggested that distinct brain
networks underlie individual differences in human spatial working
memory capacity.
Neural substrates underlying SWM individual differences

For higher capacity participants, the increase in NSW PC amplitude,
from low to high loads, was associated with larger activation/deactiva-
tion in the brain areas of the SWM-related networks (i.e., FPN and DMN).
The FPN is considered a task-positive network (Ptak, 2012), which has
been associated with working memory. Activation in bilateral parietal
regions from the FPN was larger in load 3 and load 5 compared to in load
1. On the other hand, the DMN is considered a task-negative network
(Raichle et al., 2001; Uddin et al., 2009). Brain regions in the DMN are
Fig. 3. Association between NSW component and SWM capacity. A) Lower SWM cap
SWM capacity group: Larger NSW FS slopes were related to higher SWM capacity
FS¼ factor score, Kmax¼maximum Cowen's K.
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often deactivated during task performance including retention in work-
ing memory task (Piccoli et al., 2015). Consistent with the existing
literature, we found that higher NSWPC amplitudes were correlated with
greater activation in bilateral parietal regions (the FPN regions) and
deactivation in middle cingulate cortex, supplementary motor area, and
medial frontal gyrus (the DMN regions) among higher capacity
participants.

Furthermore, load-related amplitude increase of the NSW PC was also
related to better SWM capacity, supporting previous findings that NSW
can reflect individual difference in working memory capacity (Vogel and
Machizawa, 2004). Interestingly, our results are also consistent with
findings in younger populations, where younger participants (age 9–12)
were tested with N-back task (Huang et al., 2016). It was found that
better SWM capacity was associated with higher load-related deactiva-
tion in the DMN network (including PCC/MCC and medial prefrontal
cortex) and tentatively with higher load-related activation in the FPN
network (e.g., inferior parietal lobe). The load-related deactivation was
also correlated with their executive functions measured at the earlier
ages (age 3–9). Along a similar note, our study showed that young adults
with higher SWM capacity elicited larger NSW PC responses in higher
than lower SWM load, which were related to higher activation in the FPN
regions and larger deactivation in the DMN regions. Taken together, our
findings suggested that better segregation between task-positive and the
task-negative brain networks could support greater SWM capacities.

In contrast to individuals with higher capacity, the NSW PC did not
exhibit the same association with the brain activation/deactivation for
lower capacity participants. While the lower capacity group also showed
higher activation in the FPN with higher SWM load, activity in the FPN
was not associated with the NSW PC. Additionally, the lower capacity
group also did not exhibit load-related deactivation in the DMN. Inter-
estingly, a recent study also reported decrease of DMN suppression
among the elderly, when performing tasks that showed age-related per-
formance decline, but not for the tasks where performance did not
change with age (Samu et al., 2017). In our study, a different region (i.e.,
right posterior MTG) was correlated with the NSW PC, and more deac-
tivation in the right posterior MTGwas linked to more negative FS (larger
NSW PC amplitudes). Right MTG has been linked to both the DMN and
the semantic/language network. Recent study using tractography-based
parcellation methods suggested that posterior MTG was more likely to
be part of the language network (Davey et al., 2016). Our results sug-
gested that lower capacity participants might recruit different brain
networks in the SWM task, which might be indicative of less optimal
strategy. Larger NSW PC amplitude changes with increasing load were
correlated with their poorer SWM capacity. These suggest that the
involvement of different neural substrates may underlie the poorer ca-
pacity in the lower capacity group.
acity group: Larger NSW FS slopes were related lower SWM capacity. B) Higher
. Abbreviations: NSW¼ negative slow wave, SWM¼ spatial working memory,



Fig. 4. Association between NSW component and
BOLD responses in higher SWM capacity group.
Larger NSW component amplitudes were related to
higher activations in bilateral parietal regions
(lSPG and rSPG) within FPN (A and B) and larger
deactivation in PCC/MCC and SMFG/OMFG within
DMN (C and D). In Fig. 4A, more negative FS at the
X axis indicates larger NSW amplitude. Y axis
shows activation in the FPN regions after control-
ling for age and gender, where more positive value
indicates higher activation. In Fig. 4C, more nega-
tive FS at the X axis indicates larger NSW ampli-
tude. Y axis shows the deactivation in the DMN
regions after controlling for age and gender, where
more negative value indicates larger deactivation.
In both 4A and 4C, each line represents one
participant, where a linear line was fitted to the
activation or the deactivation against FS for each
participant. Fig. 4B shows the bilateral parietal
regions where FS were significantly correlated with
the brain activation. Fig. 4D shows the DMN re-
gions where FS were significantly correlated with
the brain deactivation. In both 4B and 4D, the
colour bars indicate the z values from the correla-
tion contrasts. Abbreviations: NSW¼ negative slow
wave, BOLD¼ blood-oxygen-level dependent,
SWM¼ spatial working memory, lSPG¼ left supe-
rior parietal gyrus, rSPG¼ right superior parietal
gyrus, FPN¼ fronto-parietal network, PCC¼ pos-
terior cingulate cortex, MCC¼middle cingulate
cortex, SMFG¼ superior medial frontal gyrus,
OMFG¼ orbicular medial frontal gyrus,
DMN¼ default mode network.

Fig. 5. Association between NSW component and
BOLD responses in lower SWM capacity group.
Larger NSW component amplitudes were related
to larger deactivation in the rMTG. In Fig. 5A,
more negative FS at the X axis indicates larger
NSW amplitude. Y axis shows the deactivation in
the DMN regions after controlling for age and
gender, where more negative value indicates
larger deactivation. Each line represents one
participant, where a linear line was fitted to the
deactivation against FS for each participant.
Fig. 5B shows the rMTG region where FS were
significantly correlated with the brain deactiva-
tion. Fig. 5C shows that the DMN regions where FS
were significantly correlated with the brain deac-
tivation in the higher capacity group were not
significant in the lower capacity group. Results
were reported at the threshold level of voxel-wise
uncorrected p< 0.001 and cluster-wise FWE cor-
rected p< 0.05. The colour bar indicates the z
values from the correlation contrasts. Abbrevia-
tions: NSW¼ negative slow wave, BOLD¼ blood-
oxygen-level dependent, SWM¼ spatial working
memory, rMTG¼ right middle temporal gyrus,
DMN¼ default mode network, FS¼ factor score,
FWE¼ family-wise error.
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Selective attention and disruption suppression of working memory

Current analyses focused on the retention period in working memory
task, when stimuli were no longer present in the external environment.
To successfully retain the memory representations in the brain, selective
attention and distractor inhibition are important besides sufficient stor-
age capacity. Higher memory load exhausting attentional resources could
7

possibly limit participants' SWM capacity. Failure to inhibit distraction at
higher memory load could be linked to reduced signal-to-noise ratio of
the brain networks (Durstewitz and Seamans, 2008), which could also be
harmful to the task performance.

While previous fMRI studies have pointed to related brain networks,
EEG studies on responses in the frequency domain also identified the
associated changes in power, phase and peak frequencies. For example,
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gamma responses, which have been suggested to be originating from the
frontal and parietal cortices based on source localization (Roux et al.,
2012), were linked to working memory load changes, reflecting the
active maintenance of the visual spatial information (Roux and Uhlhaas,
2014). On the other hand, fronto-medial theta power with source local-
ization pointing to the medial frontal and ACC regions (Palva et al., 2011)
were predictive of task accuracy (Maurer et al., 2015). Alpha power and
peak frequency were likely to play a role in inhibiting disruption, espe-
cially at the later stage of retention (Maurer et al., 2015; Xie et al., 2016).
Granger causality analysis suggested that alpha-range activities flow
from frontal to parietal regions during retention of spatial information
(Protopapa et al., 2014). Enhancing alpha activities over the
task-irrelevant parietal area using TMS-EEG methods improved working
memory performance (Sauseng et al., 2009). These results from the fre-
quency domain suggested that both fast and slow neural responses
contributed to SWM processes but with different functions of selective
attention and disruption inhibition. Complementarily, our study,
focusing on the time domain of the neural responses, identified both
early and late responses during retention period. However, only the late
response developing throughout the retention period co-varied with load
increase. This late response was correlated with activation and deacti-
vation of brain networks related to selective attention and distractor
suppression in higher capacity participants.

We used the Sternberg task, which has been used in many working
memory studies since it was developed in 1966 (Sternberg, 1966). It has
several advantages over other common task paradigms such as the
lateral cueing paradigm and the N-back task. First, Sternberg task has
no task-irrelevant stimuli presented together with items to be remem-
bered. Load related changes in both behavioural and brain responses
were less likely due to task-irrelevant competing stimuli in the external
environment. Interestingly, we found significant load effect on the
DMN deactivations in the higher SWM capacity group but not in the
lower capacity group. Second, longer retention duration in the task
allowed the NSW to develop while differentiating it from the other
earlier ERP components. Early and late portions of the retention dura-
tion may be linked to different processes in SWM. Consistent with
findings from the frequency domain, the load-related increase of the
late neural responses corresponded to the patterns of the concurrently
recorded activation and deactivation changes in the FPN and DMN
among higher capacity participants. While FPN was related to selective
attention, DMN was linked to distractor suppression (Chadick and
Gazzaley, 2011; Zanto and Gazzaley, 2009). This suggests that the late
NSW responses may be related to the synchronization across the
different brain networks supporting diverse functions that promote
better spatial working memory capacity.

Future directions and conclusion

There remain several opportunities for future research. First, we
divided our participants into higher and lower capacity groups based on a
median split of the SWM capacity. The median was 3.92 indicating a
capacity of about 4 spatial locations. Four active representations were
also suggested as the average capacity limit of human working memory
by Cowan (Cowan, 2010, 2001). Thus, our capacity groups could
represent samples of young adults that had SWM capacity either higher
or lower than the average of the general young adult population. Inte-
gration of fMRI and EEG promises to provide better temporal and spatial
information of the neural substrates underlying individual differences in
spatial working memory among various populations. Longitudinal study
with larger sample could follow to further understand the related
developmental or pathological changes of the brain.

Second, the current task tends to activate processes related to main-
tenance of the memory representations rather than manipulations or
updating (Bray et al., 2015; Gorgoraptis et al., 2011; Veltman et al.,
2003). Future research could examine the individual differences in the
temporal and spatial profiles of the SWM processes for manipulation and
8

updating. In the current study, performance on each trial was quantified
in a binarised manner, but it is possible that more precise measures (e.g.,
degree of error) can be used in future studies, in conjunction with
probabilistic models, to better quantify such individual differences
(Gorgoraptis et al., 2011; Ma et al., 2014).

Third, our EEG-fMRI analyses focused on correct trials only. Never-
theless, different sources of errors may give insight on the processes that
limited the SWM capacity. Experiment designs that induce more error
trials can be used to examine the sources of errors that limit the SWM
capacity.

In conclusion, we identified the NSW component during SWM
retention using PCA and demonstrated that it was linked to individual
differences in SWM capacity and both functional activation and deacti-
vation patterns. Our findings suggest that participants with high and low
SWM capacity may utilize differential NSW-related neural networks for
memory maintenance.
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