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Healthy aging is accompanied by disruptions in the functional modular organization of the human brain. Cross-sectional studies have
shown age-related reductions in the functional segregation and distinctiveness of brain networks. However, less is known about the
longitudinal changes in brain functional modular organization and their associations with aging-related cognitive decline. We examined
age- and aging-related changes in functional architecture of the cerebral cortex using a dataset comprising a cross-sectional healthy
young cohort of 57 individuals (mean � SD age, 23.71 � 3.61 years, 22 males) and a longitudinal healthy elderly cohort of 72 individuals
(mean � baseline age, 68.22 � 5.80 years, 39 males) with 2–3 time points (18 –24 months apart) of task-free fMRI data. We found both
cross-sectional (elderly vs young) and longitudinal (in elderly) global decreases in network segregation (decreased local efficiency),
integration (decreased global efficiency), and module distinctiveness (increased participation coefficient and decreased system segrega-
tion). At the modular level, whereas cross-sectional analyses revealed higher participation coefficient across all modules in the elderly
compared with young participants, longitudinal analyses revealed focal longitudinal participation coefficient increases in three higher-
order cognitive modules: control network, default mode network, and salience/ventral attention network. Cross-sectionally, elderly
participants also showed worse attention performance with lower local efficiency and higher mean participation coefficient, and worse
global cognitive performance with higher participation coefficient in the dorsal attention/control network. These findings suggest that
healthy aging is associated with whole-brain connectome-wide changes in the functional modular organization of the brain, accompanied
by loss of functional segregation, particularly in higher-order cognitive networks.
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Introduction
Healthy aging is accompanied by declines in cognitive function
(Schaie, 1996; Hedden and Gabrieli, 2004). Knowledge about

brain changes associated with healthy aging and their relation-
ship to cognitive decline can inform efforts to preserve cognitive
function. Task-free fMRI, which measures the temporal syn-
chrony of spontaneous low-frequency BOLD signal fluctuations
under task-free settings (Biswal et al., 1995; Fox and Raichle,
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Significance Statement

Cross-sectional studies have demonstrated age-related reductions in the functional segregation and distinctiveness of brain
networks. However, longitudinal aging-related changes in brain functional modular architecture and their links to cognitive
decline remain relatively understudied. Using graph theoretical and community detection approaches to study task-free func-
tional network changes in a cross-sectional young and longitudinal healthy elderly cohort, we showed that aging was associated
with global declines in network segregation, integration, and module distinctiveness, and specific declines in distinctiveness of
higher-order cognitive networks. Further, such functional network deterioration was associated with poorer cognitive perfor-
mance cross-sectionally. Our findings suggest that healthy aging is associated with system-level changes in brain functional modular
organization, accompanied by functional segregation loss particularly in higher-order networks specialized for cognition.
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2007), is particularly promising for studying age-related changes
in intrinsic brain functional connectivity networks. Studies using
independent component and seed-based analyses have found
age-related decreases in intranetwork functional connectivity
(Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Tomasi
and Volkow, 2012; Zhang et al., 2014), implying reduced network
specialization, as well as increases in positive correlations and
decreases in anticorrelations between these networks (Chan et al.,
2014; Ferreira et al., 2016), implying age-related reduced network
segregation.

Graph theoretical approaches complement seed-based and
independent component analysis approaches by providing a
system-level quantification of the modular properties of complex
networks (Rubinov and Sporns, 2010). The human brain is pro-
posed to have a modular functional network architecture (Fer-
rarini et al., 2009; He et al., 2009; Meunier et al., 2009b; Power et
al., 2011), characterized by segregated brain modules with dense
connections within modules and sparse connections between
modules (Rubinov and Sporns, 2010). This is thought to confer
several organizational advantages, such as adaptability and ro-
bustness of network function, minimization of wiring costs, and
facilitation of functional specialization (Kashtan and Alon, 2005;
Meunier et al., 2010; Bullmore and Sporns, 2012; Sporns and
Betzel, 2016). Consistent with the notion that increasing age is
associated with reduced functional specialization and segregation
of brain networks, studies using graph theoretical approaches
have shown disruptions in the brain functional modular organi-
zation in healthy elderly persons. Specifically, decreased modu-
larity and increased participation coefficient occur with increased
age (Betzel et al., 2014; Chan et al., 2014) and compared with
young adults (Song et al., 2014; Geerligs et al., 2015). With both
independent component analysis/seed-based and graph theoret-
ical approaches, lower segregation of brain functional networks
was also associated with lower cognitive performance (Andrews-
Hanna et al., 2007; Damoiseaux et al., 2008; Geerligs et al., 2015).

To date, most of these studies have been cross-sectional, and
few studies have examined longitudinal functional connectivity
changes in healthy elderly. Compared with cross-sectional stud-
ies, longitudinal studies mitigate cohort effects and are hence
better suited for tracking the intrasubject, age-related connectiv-
ity changes over time (Kraemer et al., 2000). Recently, we re-
ported a link between greater functional connectivity increases
between the default mode and control networks and greater de-
clines in processing speed over time (Ng et al., 2016). However,
this study was limited in several aspects. First, only three higher-
order cognitive networks were examined. Second, we assumed an
a priori functional network structure derived from healthy young
adults (Yeo et al., 2011). However, there is evidence suggesting
that the modular structure of healthy elderly differs from that of
young adults (e.g., Meunier et al., 2009a; Geerligs et al., 2015).
The use of a group-specific functional network partition rather
than an a priori partition could hence allow for a more accurate
network structure characterization. Third, segregation in the pre-
vious study was narrowly quantified as functional connectivity
between two networks (e.g., default mode and control networks).
Graph theoretical measures of modular segregation and distinc-
tiveness, such as participation coefficient (which measures the
diversity of a region’s connections across all modules) and system
segregation (which quantifies intermodule connectivity relative
to intramodule connectivity), might instead provide a more
comprehensive and system-level quantification of network seg-
regation in the brain. Finally, the previous study did not compare
connectivity changes in healthy elderly against a reference group

of younger adults. As such, it is not known whether the observed
connectivity changes with time in the elderly are indeed reflecting
the aging process.

To address these gaps, we thus sought to examine both cross-
sectional changes (between healthy young and elderly) and
longitudinal changes (of healthy elderly) in the functional orga-
nization of the cerebral cortex using graph theoretical and com-
munity detection approaches. We hypothesized that the healthy
elderly would show reduced network segregation and distinctive-
ness compared with young adults, and such pattern would dete-
riorate with time. Further, these network deteriorations would be
associated with cognitive impairment cross-sectionally and
longitudinally.

Materials and Methods
Participants
Longitudinal analyses. Seventy-two healthy elderly Chinese adults from
the Singapore-Longitudinal Aging Brain Study (Chee et al., 2009; Lo et
al., 2014; Ng et al., 2016; Leong et al., 2017) were included in the longi-
tudinal analyses (for participant demographic and cognitive characteris-
tics, see Table 1). All participants underwent neuroimaging and
neuropsychological assessments at 18 to 24 month intervals within a 5
year period, and had 2 or 3 time points of data (two time points: 39
participants; three time points: 33 participants) with satisfactory quality.
Participants met the following criteria at all time points: (1) scored �24
in the Mini-Mental State Examination (Folstein et al., 1975); (2) scored
�9 in the modified Geriatric Depression Screening Scale (Yesavage and
Sheikh, 1986); and (3) did not have the following conditions: (a) history
of significant vascular events (i.e., myocardial infarction, stroke, or pe-
ripheral vascular disease), (b) history of cardiac, lung, liver, or kidney
failure, (c) history of malignant neoplasia of any form, (d) history of head
trauma with loss of consciousness, (e) active or inadequately treated
thyroid disease, or (f) active neurological or psychiatric conditions. The
study was approved by the Institutional Review Board of the National
University of Singapore, and written informed consent was obtained
from all participants before the start of the study.

Neuropsychological assessments were performed by trained research-
ers within 3 months of the neuroimaging scan, and comprised five do-
mains: processing speed, attention, verbal memory, visuospatial
memory, and executive functioning (Chee et al., 2009; Lo et al., 2014;
Leong et al., 2017). The assessments were administered in English or
Mandarin depending on the participant’s language proficiency. Details
of the neuropsychological test battery are described in our previous study
(Leong et al., 2017). Briefly, the five cognitive domains were assessed
using the following tests: (1) processing speed: Symbol Digit Modalities
Test (Smith, 1991), Symbol Search Task in the Wechsler Memory Scale-
Third Edition (Wechsler, 1997), and Trail Making Test A (Reitan and

Table 1. Demographic and cognitive characteristics of elderly participants at
baselinea

Characteristic Elderly (at baseline) n � 72

Age (years) 68.22 (5.80), range � 58.64 – 84.91
Sex (female/male) 33/39
Handedness (right/left) 68/4
Education (years) 12.32 (3.13), range � 6 –20
Hypertension (%) 36.1%
Diabetes (%) 8.3%
MMSE score 28.18 (1.35), range � 24 –30
GDS score 1.19 (1.35), range � 0 –7
Cognitive domain scores

Attention (n � 71) 50.32 (6.36), range � 34.09 – 63.32
Processing speed (n � 72) 50.45 (8.72), range � 32.51–73.13
Verbal memory (n � 72) 51.58 (7.85), range � 35.37– 64.77
Visuospatial memory (n � 72) 50.83 (7.59), range � 34.36 – 64.00
Executive function (n � 72) 50.32 (6.29), range � 38.04 – 65.22

aMMSE, Mini-Mental State Examination; GDS, Geriatric Depression Screening Scale.
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Wolfson, 1985); (2) attention: Digit Span Test and Spatial Span Test in
Wechsler Memory Scale-Third Edition; (3) verbal memory: Rey Audi-
tory Verbal Learning Test (Lezak et al., 2004); (4) visuospatial memory:
Visual Paired Associates Test; and (5) executive functioning: Categorical
Verbal Fluency Test (Lezak et al., 2004), Design Fluency Test in the
Delis-Kaplan Executive Function System (Delis Kaplan et al., 2001), and
Trail Making Test B (Reitan and Wolfson, 1985). The test scores at each
time point were standardized to T scores (mean � SD, 50 � 10) with
respect to the baseline. For each cognitive domain, we obtained a com-
posite score for each participant at each time point by averaging the
standardized T scores across all tests within that domain. Additionally, a
measure of global cognitive performance for each participant at each
time point was derived by averaging across the T scores of the five cog-
nitive domains.

Cross-sectional analyses. For the cross-sectional analyses, we examined
baseline neuroimaging data from the 72 healthy elderly participants de-
scribed above, as well as neuroimaging data from a separate dataset com-
prising 57 healthy young Chinese adults (mean � SD age, 23.71 � 3.61
years, range 18.59 –34.08 years, 22 males, 55 right-handed). All healthy
young participants fulfilled the following criteria: (1) no history of psy-
chiatric or neurologic disorders, (2) no history of severe medical illnesses,
(3) not taking any long-term psychoactive medication, (4) nonsmoker,
and (5) consume �31 units of alcohol per week. The study on the young
participants was approved by the Institutional Review Board of the Na-
tional University of Singapore, and all participants gave written informed
consent before the commencement of the study.

Image acquisition
Both healthy young and elderly participants were scanned at the Centre
for Cognitive Neuroscience, Duke-NUS Medical School, on a 3 T Sie-
mens Magnetom Tim Trio System (Siemens, Erlangen, Germany). The
scan protocol included a high-resolution T1-weighted structural scan
(magnetization-prepared rapid gradient echo (MPRAGE) sequence, rep-
etition time � 2300 ms, echo time � 2.98 ms, inversion time � 900 ms,
flip angle � 9°, field of view � 256 � 240 mm 2, matrix � 256 � 240, 192
continuous sagittal slices, voxel size � 1.0 � 1.0 � 1.0 mm 3, band-
width � 240 Hz/pixel), as well as an 8 min T2*-weighted task-free func-
tional MRI scan where participants were instructed to fixate on a cross in
the center of the screen (echo planar sequence, repetition time � 2000
ms, echo time � 30 ms, flip angle � 90°, field of view � 192 � 192, matrix
size � 64 � 64, 36 continuous axial slices, voxel size � 3.0 � 3.0 � 3.0
mm 3, bandwidth � 2112 Hz/pixel).

Image preprocessing
Functional imaging. fMRI images were preprocessed using previous pro-
tocol (Ng et al., 2016) based on the Analysis of Functional NeuroImages
software (Cox, 1996) and the FMRIB (Oxford Centre for Functional MRI
of the Brain) Software Library (Jenkinson et al., 2012). Preprocessing
steps included the following: (1) removal of first 5 volumes for magnetic
field stabilization; (2) slice-time and motion correction; (3) time series
despiking and grand mean scaling; (4) spatial smoothing using a 6 mm
FWHM Gaussian kernel; (5) bandpass temporal filtering (0.009 – 0.1
Hz); (6) removal of linear and quadratic trends; (7) structural image
coregistration using boundary-based registration, followed by nonlinear
registration (FNIRT) of functional images to standard (MNI 152) space;
(8) regression of nuisance signals (white matter, CSF, global signal and
six motion parameters); and (9) motion scrubbing of volumes with
framewise displacement � 0.2 mm and DVARS (root-mean-square in-
tensity difference from one volume to the next) � 0.5% (1 volume before
and 2 volumes after these marked volumes were also removed following
the scrubbing procedure described in previous studies) (Power et al.,
2012, 2014). Before scrubbing, the data had to meet satisfactory motion
criteria (maximum absolute displacement � 3 mm); the resultant images
were at least 4 min in length (�120 volumes). Elderly participants had
greater mean relative motion (t(126) � �5.82, p � 4.56e �8) and lower
number of volumes after scrubbing (t(126) � 2.63, p � 9.60e �3), but no
differences in mean absolute motion compared with young participants
(t(126) � �0.086, p � 0.931). Additionally, elderly participants did not
show significant changes in these motion parameters with time (mean

absolute motion: t(167) � 1.30, p � 0.194; mean relative motion: t(167) �
0.82, p � 0.413; number of volumes: t(167) � 1.12, p � 0.261). Motion
characteristics of elderly and young participants are given in Table 2.

Image analyses
Construction of functional connectivity matrices. Undirected, weighted
functional connectivity matrices (“graphs”) were generated for each par-
ticipant at each time point. Individual preprocessed functional images in
standard space were first parcellated into 114 cortical ROIs (“nodes”)
defined by a previous functional connectivity-based parcellation scheme
(Yeo et al., 2011). Functional graphs for each individual were then com-
puted by calculating the correlation between the mean BOLD time series
of each pair of ROIs (“edges”). All diagonal elements and negative con-
nections in the matrices were set to 0.

Derivation of group-level network modular structure. Group-level net-
work modular structures of young participants as well as elderly partici-
pants at each of the three time points were derived using a previously
described two-step consensus community detection method (Lancichi-
netti and Fortunato, 2012; Bertolero et al., 2015). In this method, we first
ran community detection on individual functional graphs to generate
individual-level modular structures. Then, we summed across the indi-
vidual modular assignments to produce a group-level allegiance matrix
(Braun et al., 2015), and subsequently performed community detection
on the allegiance matrix to produce the group-level modular structure.
For both steps, community detection was performed across a range of
costs (0.10 – 0.30, in 0.001 steps) using Louvain methods (Blondel et al.,
2008) based on maximizing modularity and repeated using a range of
gamma values from 1 to 10. The range of costs for the community detec-
tion was set to be the same as the range used to compute the graph
theoretical measures (determination of network cost thresholds is de-
scribed in the next section).

To select gamma values at the individual and group level for further
analyses, we computed the partition similarity of all possible group-level
partitions to the a priori network partition defined by Yeo et al. (2011)
using the z score of the Rand coefficient (Traud et al., 2011). The Rand z
score (zRand��) denotes the similarity of two partitions � and � beyond
chance and is defined as follows:

zRand�� �
1

�w��

�w�� �
M�M�

M � (1)

where M is the total number of pairs of nodes in the network, M� is the
number of pairs that are assigned to the same module in partition �, M�

is the number of pairs that are assigned to the same module in partition �,
w�� is the number of pairs that are assigned to the same module both in
partition � and partition �, and �w��

is the SD of w�� under a hypergeo-
metric distribution with the same number and size of modules. We noted
that the optimal group-level partition (i.e., partition with highest simi-
larity to the a priori network partition) (Yeo et al., 2011) differed in terms
of the gamma values and number of modules for different subsets of
participants. Therefore, to compare across partitions of different groups,
we identified a consensus individual and group gamma value that
showed (1) the highest average Rand z scores across group partitions

Table 2. Motion characteristics of young and elderly participantsa

Characteristic

Young adults

Elderly

Baseline
Second time
point

Third time
point

Prescrubbing
Relative motion (mm) 0.050 (0.024) 0.071 (0.028) 0.072 (0.029) 0.067 (0.028)
Absolute motion (mm) 0.261 (0.193) 0.247 (0.146) 0.264 (0.153) 0.279 (0.219)

Postscrubbing
Relative motion (mm) 0.045 (0.016)* 0.063 (0.021) 0.064 (0.022) 0.062 (0.020)
Absolute motion (mm) 0.238 (0.164) 0.232 (0.117) 0.244 (0.140) 0.254 (0.195)
Number of volumes 220.8 (23.3)* 211.0 (25.2) 212.8 (24.7) 220.1 (19.9)

aData are mean (SD).

*Postscrubbing motion parameters that showed significant differences ( p � 0.05) between young and elderly
participants. Within the healthy elderly, no postscrubbing motion parameters showed significant changes with
time.
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derived from young participants, elderly participants at baseline, and
young plus elderly participants at baseline, and (2) had six to nine mod-
ules across the various group partitions (in line with the eight a priori
network partitions) (Yeo et al., 2011). This corresponded to a gamma
value of 2 both at the individual and group level (for a comparison of
mean Rand z scores across several combinations of gamma parameters,
see Table 3).

To test for group differences (young vs elderly) in similarity of group
partitions to the a priori brain network partition (Yeo et al., 2011) (i.e.,
zRandyoung

whole-brain vs zRandelderly at baseline
whole-brain ), we calculated 95% CIs for the Rand

z scores of young and elderly group partitions, respectively, using sub-
sampling methods. For each group (young or elderly), we first derived
1000 group partitions based on subsamples of 45 participants (constitut-
ing at least 80% of participants in the young adults sample). We then
calculated Rand z scores (relative to the a priori partition) for each of the
1000 group partitions. To obtain the 95% CIs for the young and elderly
group partitions, we calculated the 2.5% (lower bound of the CI) and
97.5% (upper bound of the CI) percentile of the Rand z score distribution
from the 1000 group partitions for each group. Differences in Rand z
scores between young and elderly group partitions were considered to be
significant (� � 0.05) if there were no overlap in CIs of the two groups.

For the cross-sectional analyses, measures of distinctiveness (i.e., par-
ticipation coefficient, within-module degree, and system segregation)
were computed using the group-level modular partition based on the
functional graphs of all healthy young participants. For the longitudinal
analyses, measures of distinctiveness were computed using the group-
level modular structure based on the functional graphs of all elderly
participants at their baseline time point.

Graph theoretical analysis. Following our previous approach (Wang et
al., 2018), graph theoretical measures were computed for each partici-
pant at each time point using in-house scripts based on the brain con-
nectivity toolbox (Rubinov and Sporns, 2010). Measures were computed
over a range of network cost thresholds (0.10 � cost � 0.30, step � 0.01)
that met the following criteria: (1) average number of edges per node was
larger than the log of the total number of nodes (Watts and Strogatz,
1998; Wang et al., 2009); (2) 80% of the nodes were fully connected
(Bassett et al., 2008); and (3) small-worldness of the networks was �1
(Watts and Strogatz, 1998). Composite values for each graph theoretical
measure were then obtained by integrating each measure across the en-
tire range of cost thresholds. We computed the following measures of
network integration, segregation, and distinctiveness.

Measures of integration. Global integration in the brain characterizes
the ease with which distributed brain regions communicate and integrate
information (Rubinov and Sporns, 2010). We calculated as a global mea-
sure of integration in brain networks the weighted global efficiency,
which is defined as the average of the inverse shortest path length be-
tween all pairs of nodes (Latora and Marchiori, 2001; Rubinov and
Sporns, 2010).

Measures of segregation. Local segregation in the brain quantifies the
presence of highly connected brain regions (i.e., clusters) within the net-
work and measures the capability for specialized processing to occur

within these clusters (Rubinov and Sporns, 2010). We calculated as a
global measure of network segregation the weighted local efficiency,
which is defined as the average of the inverse shortest path length be-
tween all pairs of nodes within the subgraph containing only neighbors of
a node (Latora and Marchiori, 2001; Rubinov and Sporns, 2010).

Measures of distinctiveness. Measures of integration and segregation,
such as local and global efficiency, do not take into account the modular
structure of the brain. We additionally computed measures that describe
the distinctiveness and segregation of functional modules in the brain:
participation coefficient, within-module degree, and system segregation.
The nodal-weighted participation coefficient is a measure of intermod-
ule connectivity and measures how evenly distributed connections of a
node are across modules (Guimerà and Nunes Amaral, 2005). The
nodal-weighted within-module degree, on the hand, is a measure of
intranetwork connectivity and measures the connectedness of a node to
other nodes in the same module (Guimerà and Nunes Amaral, 2005).
Finally, based on work by Chan et al. (2014), we computed a global
measure of system segregation on the thresholded network matrices,
which summarizes values of intramodule correlations relative to inter-
module correlations.

We obtained both global-level and modular-level measures of distinc-
tiveness for statistical analyses. To quantify global-level changes in mod-
ular segregation and distinctiveness, we examined system segregation as
well as a global measure of participation coefficient, which is calculated as
the mean composite nodal participation coefficient across all nodes. To
quantify changes in the segregation of specific modules (i.e., modular-
level changes), we averaged composite nodal participation coefficient
values across all nodes in the same module. Additionally, based on the
composite nodal participation coefficient and within-module degree val-
ues, we can categorize each node into one of four node types (Guimerà
and Nunes Amaral, 2005; Power et al., 2013; Bertolero et al., 2015): (1)
connector hubs (high participation coefficient and high within-module
degree); (2) satellite connectors (high participation coefficient and low
within-module degree); (3) provincial hubs (low participation coeffi-
cient and high within-module degree); and (4) peripheral nodes (low
participation coefficient and low within-module degree). The threshold
for a high participation coefficient was determined using a mean-based
split of the participation coefficient values across all individuals and all
time points, whereas the threshold for a high within-module degree was
set at 10 �5 following previous work (Bertolero et al., 2015). To examine
age-related changes in the assignment of node types within each module,
we then computed the proportion of each node type within each module
as follows:

Proportion of node type within module M

�
Total number of nodes with particular node type in module M

Total number of nodes in module M

(2)

Statistical analyses
Cross-sectional changes in graph theoretical measures between young and
elderly participants. To examine group differences in graph theoretical
measures between young and elderly participants, we used linear regres-
sion models with the graph theoretical measure as the dependent vari-
able, group as the independent variable of interest, and sex as a nuisance
covariate.

Association between cross-sectional changes in graph theoretical measures
and cognitive performance. For those graph theoretical measures that
showed differences between young and elderly, we further examined
their association with cognitive performance in the elderly participants,
of which cognitive information was available. Separate linear regression
models for each of the six cognitive measures (i.e., five cognitive domains
and global cognitive measure) were performed, with cognitive score as
the dependent variable, graph theoretical measure as the independent
variable of interest, and sex, education, and age as variables of no interest.

Longitudinal changes in graph theoretical measures of elderly partici-
pants. We examined longitudinal changes in the graph theoretical mea-
sures using linear mixed-effects models, which model both fixed and

Table 3. Mean similarity of group-level partitions to an a priori network
parcellation (Yeo et al., 2011)a

Gamma parameters

Rand z score (number of modules)
of group-level partition Mean Rand

z score across
the three group-
level partitions

Young
adults

Elderly at
baseline

Young adults �
elderly at baseline

Ind � 1, Grp � 2 32.98 (7) 40.56 (6) 39.48 (6) 37.67
Ind � 2, Grp � 2b 36.13 (7) 43.62 (8) 37.53 (6) 39.09
Ind � 3, Grp � 2 40.22 (8) 40.80 (7) 35.93 (7) 38.98
Ind � 4, Grp � 2 40.46 (10) 39.29 (7) 34.78 (7) 38.18
Ind � 1, Grp � 3 38.04 (7) 41.44 (8) 34.95 (11) 38.14
Ind � 2, Grp � 3 35.26 (7) 39.06 (8) 32.77 (8) 35.69
Ind � 3, Grp � 3 43.94 (10) 37.33 (8) 34.32 (9) 38.53
Ind � 4, Grp � 3 39.63 (10) 30.98 (10) 32.44 (11) 34.35
aInd, Individual-level gamma; Grp, group-level gamma.
bBased on the mean Rand z score, the combination of individual gamma � 2 and group gamma � 2 was selected.
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random effects and account for unequal sampling intervals and missing
data (Cnaan et al., 1997; Singer and Willett, 2003; Long, 2012). Following
previous methods (Ng et al., 2016), random intercepts as well as random
slopes for the effect of time (years since baseline) were modeled for each
subject, with the effect of time allowed to vary by baseline age (i.e., age �
time interaction). We also accounted for the effects of baseline age, sex,
and years of education by modeling these variables as fixed effects. The
linear mixed-effects model for the changes in graph theoretical measures/
cognitive domains is thus as follows:

Yij � 	00 
 	01(Sexj) 
 	02(Educationj) 
 	03(Agej)


 	10(Timeij) 
 	11(Agej * Timeij) 
 �0j 
 �1j(Timeij) 
 rij (3)

where Yij denotes the graph theory measure for each participant j at time
point i, 	 values denote the estimated fixed effect coefficients, � values
denote the estimated random effect coefficients, and rij denotes the re-
sidual for each participant j at time point i.

Association between longitudinal changes in graph theoretical measures
and cognition. For graph theoretical measures that showed significant
longitudinal changes, we examined how longitudinal changes in these
graph theoretical measures were associated with longitudinal changes in
each of the six cognitive measures. We first obtained the predicted slopes
(�1j.Cognition or �1j.Graph theory) reflecting the effect of time (i.e.,
	10(Timeij) � �1j(Timeij)) for the cognitive measure and the graph the-
oretical measure of interest based on their respective linear mixed-effects
models (i.e., Eq. 3) for each participant j. We then ran multiple re-
gression analyses to evaluate the association between change in cog-
nitive performance (�1j.Cognition) and change in graph theoretical
measure (�1j.Graph theory) as follows:

�1j.Cognition � b0 
 b1(Agej) 
 b2(�1j.Graph theory)


 b3(�1j.Graph theory * Agej) (4)

where b2 and b3 are the estimated brain-cognition coefficients.
Multiple-comparisons correction on the p values of model coefficient

estimates was performed for all modular measures (i.e., participation coeffi-
cient and proportion of node types) using the false discovery rate (Benjamini
and Hochberg, 1995). For analyses examining associations between modular
graph theoretical measures and cognitive performance, multiple-
comparisons correction was only performed across modules whose mea-
sures showed significant age- or aging-related changes.

All statistical analyses were performed using R 3.0.3 (R Core Team,
2015) with Rstudio (RStudio Team, 2015). Linear mixed-effects models
were performed using the lme4 (Bates et al., 2015) package. Results were
visualized using either R (graphical packages ggplot2) (Wickham, 2009)
and ggalluvial (Brunson, 2018) or SPSS version 24.0 (IBM).

Additional validation analyses
Findings from the above analyses could potentially be affected by the
presence of other covariates (e.g., motion) or by the choice of method-
ology (e.g., parcellation scheme). To ensure that our findings were unaf-
fected by these factors, we performed a number of additional analyses as
detailed below.

Effects of motion. Young and elderly participants in this study showed
differences in mean relative motion and number of volumes after scrubbing.
To ensure that our findings were not affected by motion, we repeated both
cross-sectional and longitudinal analyses with mean relative motion and
number of volumes added as nuisance covariates. Additionally, studies have
suggested that scan length might affect the reliability of functional connec-
tivity estimates (Birn et al., 2013). To ensure that the findings were not
affected by scan length, we repeated the analyses: (1) on a subset of partici-
pants (cross-sectional: n � 54, young; n � 68, elderly; longitudinal: n � 68,
elderly) with at least 5 min of imaging data (�150 volumes) after scrubbing;
and (2) on the original cohort of participants after maintaining equal scan
lengths across all participants (i.e., each participant’s preprocessed func-
tional image was trimmed to 123 volumes, or 4 min 6 s of data, based on the
minimum scan length remaining after scrubbing).

Effects of mean connectivity. Mean connectivity strength across all edges
has been shown to be strongly related to vascular health (Geerligs et al.,

2017). Given that age-related differences in mean connectivity strength have
also been reported in previous studies (Geerligs et al., 2017), observed age-
related differences in functional connectivity-based measures (e.g., graph
theoretical measures) may hence be related to these age-related mean con-
nectivity differences and possibly reflect age-related non-neural changes
(e.g., changes in vascular factors) rather than neural changes. In our dataset,
we similarly observed mean connectivity differences (computed as the mean
connectivity strength across all edges in the unthresholded connectivity ma-
trix) between young and elderly participants (elderly � young: t(126) �
�2.34, p � 0.021), although elderly participants did not show changes in
mean connectivity strength with time (t(167) � �0.588, p � 0.556). To
ensure that our findings were unaffected by age-related mean connectivity
differences, we thus repeated the main analyses with mean connectivity in-
cluded as a nuisance covariate.

Effects of global signal regression. Global signal regression was included
as a preprocessing step in our study as our previous longitudinal aging
work has shown that it plays an important factor in revealing aging effects
(Ng et al., 2016). However, global signal regression has also been sug-
gested to exert differential effects on groups with different neural net-
work structures (Murphy and Fox, 2017). In view of known differences in
brain network architecture between young and older adults (e.g.,
Meunier et al., 2009a), there is a possibility that global signal regression
might impact the observed findings between the young and elderly par-
ticipants in our study. We thus repeated the cross-sectional analyses
without global signal regression.

Choice of parcellation scheme. To examine whether our findings were
affected by the parcellation scheme used, we repeated the analyses using
an independent 400-node functional connectivity-based parcellation
scheme (Schaefer et al., 2018), whose nodes have been mapped to the
network parcellation given by Yeo et al. (2011). Of the 400 nodes, 11
nodes (located primarily in the temporal pole and parietal regions) were
removed due to lack of coverage in the functional images of some partic-
ipants, resulting in 389 nodes used for the connectivity matrix construc-
tion and derivation of graph theoretical measures.

Choice of group-level community partition. In the present study, the cross-
sectional analysis was conducted using the group-level modular partition of
only the young participants. This might result in a less fitted partition for the
elderly participants and potentially influence group differences between
young and elderly participants. To ensure that the observed group differ-
ences were not the result of an ill-fitted partition, we repeated both cross-
sectional and longitudinal analyses using a group-level modular partition
based on all young and elderly partitions at baseline.

Results
Group-level modular structures of healthy young and
elderly individuals
The group-level modular structures of elderly individuals at base-
line as well as young individuals are provided in Figure 1 (com-
position of modules for young and elderly participants at baseline
is provided in Fig. 1-1 (available at https://doi.org/10.1523/
JNEUROSCI.1451-18.2019.f1-1) and Fig. 1-2 (available at
https://doi.org/10.1523/JNEUROSCI.1451-18.2019.f1-2), respe-
ctively). Modules of both structures resembled known intrinsic
connectivity networks reported in previous literature (Damoi-
seaux et al., 2006; Smith et al., 2009; Yeo et al., 2011). To compare
the modular structures between the young participants and el-
derly participants at different time points, we examined how the
data-driven modular partitions differed from the subnetwork
partition (16 subnetworks) defined by Yeo et al. (2011) using the
z score of the Rand index (Fig. 2A). Both group-level modular
structures of young and elderly participants at baseline showed
significant similarity to the a priori partition beyond chance
(zRandyoung

whole-brain � 48.73, zRandelderly at baseline
whole-brain � 43.94, p values

�1e�10). However, the modular structure of young participants
showed significantly higher similarity to the a priori partition
than elderly participants at baseline (zRandyoung

whole-brain � 48.73, 95%
CI of subsamples, 43.65, 49.43) versus zRandelderly at baseline

whole-brain � 43.94
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(95% CI of subsamples, 32.26, 43.40). This indicated that the
group-level modular structure for healthy elderly at baseline
had greater fragmentation of networks compared with young
participants, with several brain regions within the same a priori
subnetwork being reassigned to different modules (Fig. 2A). No-
tably, compared with young participants, elderly at baseline had
greater fragmentation in higher-order networks (i.e., default
mode, salience/ventral attention, and control networks)
(zRandyoung

higher-order networks � 43.37 vs zRandelderly at baseline
higher-order networks � 33.11,

difference � 10.26) than the other networks (zRandyoung
other networks �

13.20 vs zRandelderly at baseline
other networks � 9.97, difference � 3.23).

This fragmentation of a priori networks in the elderly was also
further increased at later time points, with similarity to the a
priori partition decreasing with time (zRandelderly at baseline

whole-brain � 43.94,
zRandelderly at 2nd time point

whole-brain � 35.22, zRandelderly at 3rd time point
whole-brain � 35.19).

Similar to what was observed between young participants and
elderly at baseline, higher-order networks showed relatively

greater modular assignment changes with time (Fig. 2B)
(zRandelderly at baseline

higher-order networks � 33.11, zRandelderly at 2nd time point
higher-order networks � 23.35,

difference from baseline � 9.76, zRandelderly at 3rd time point
higher-order networks � 27.65, differ-

ence from baseline � 5.46) compared with the other networks
(zRandelderly at baseline

higher-order networks � 9.97, zRandelderly at 2nd time point
higher-order networks � 10.85, differ-

ence from baseline � �0.88, zRandelderly at 3rd time point
higher-order networks � 8.65, difference

from baseline � 1.32). Our observation of increased fragmentation of
networks with time in the elderly, with regions within the same subnet-
work being assigned to different modules, thus suggests that brain func-
tional networks, particularly the higher-order networks, become less
distinct as one ages.

Cross-sectional and longitudinal decreases in global measures
of integration, segregation, and distinctiveness in the healthy
elderly
Healthy elderly showed reductions in global measures of integra-
tion and segregation, with both lower global efficiency and local

Figure 1. Group-level modular structure of healthy young and elderly participants at baseline. A, The group-level modular structure of young participants comprised seven modules. B, The group-level
modular structure of elderly participants at baseline comprised eight modules. Modules of both structures resembled known intrinsic connectivity networks. Module labels were assigned based on the network
definition by Yeo et al. (2011). Composition of modules for young and elderly participants at baseline is provided in Figure 1-1 (available at https://doi.org/10.1523/JNEUROSCI.1451-
18.2019.f1-1) and Figure 1-2 (available at https://doi.org/10.1523/JNEUROSCI.1451-18.2019.f1-2), respectively. DorsAttn, Dorsal attention; SomMot, somatomotor; SalVentAttn, salience/ventral attention.
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efficiency compared with young participants (Fig. 3A,B; Table 4)
as well as with time (Fig. 3C,D; Table 5). No age or age � time
interaction effects were found for both global and local efficiency
in the elderly.

Healthy elderly participants also showed reductions in
global measures of distinctiveness, with higher participation
coefficient and lower system segregation compared with
young participants (Fig. 4 A, B; Table 4), as well as with age and
time (Fig. 4C,D; Table 5). There were no age � time interac-
tion effects for both mean participation coefficient and system
segregation in the elderly.

Cross-sectional and longitudinal decreases in modular
measures of distinctiveness in the healthy elderly
Compared with young adults, healthy elderly participants
showed higher participation coefficient across all modules (Table
6). Healthy elderly also showed a greater proportion of node
types with high participation coefficient (i.e., connector hubs and
satellite connectors) and lower proportion of node types with low
participation coefficient (i.e., provincial hubs and peripheral
nodes) compared with young participants (Table 7). While
changes in proportion of node types were strongest for visual,
somatomotor/salience ventral attention A and default mode net-

Figure 2. The modular structure of healthy elderly becomes less distinctive with time. A, Consensus matrices map group-level modular partitions of young participants and elderly
participants at each of the three time points to eight networks defined by Yeo et al. (2011). Each module is represented by a single color. With age and time, the modular structure
becomes less distinctive, with brain regions within the same a priori subnetwork increasingly getting assigned to different modules. B, The alluvial plot represents changes in group-level
modular assignment of brain regions in healthy elderly across three time points. Each block represents a module. Each line indicates a brain region. The color of each line represents the
modular assignment of each brain region at the first time point. Among the modules, higher-order networks (e.g., default mode, control, and salience/ventral attention networks)
showed the greatest assignment changes in the healthy elderly with time. Similar observations in module fragmentation were made particularly between young and elderly participants
at baseline when repeating the analyses with equal scan lengths maintained across participants, where group differences in the modular structure between the two groups remained
significant (Figure 2-1, available at https://doi.org/10.1523/JNEUROSCI.1451-18.2019.f2-1; Figure 2-2, available at https://doi.org/10.1523/JNEUROSCI.1451-18.2019.f2-2). DM, De-
fault mode; CON, control; LIM, limbic; SVA, salience/ventral attention; DA, dorsal attention; SM, somatomotor; VIS, visual; TP, temporoparietal; DorsAttn, dorsal attention; SomMot,
somatomotor; SalVentAttn, salience/ventral attention.
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works, similar trends were also observed for the rest of the mod-
ules. Collectively, these findings indicate a general increase in
internetwork connectivity and consequently a decrease in segre-
gation across all modules in healthy elderly compared with their
younger counterparts.

While the cross-sectional group analyses showed nonspecific
age-related decreases in segregation across all modules, longitu-
dinal analyses instead revealed more focal network changes. Spe-
cifically, healthy elderly showed increases in the participation
coefficient of three higher-order cognitive modules with time
and/or with age: the salience/ventral attention network, the de-
fault mode network, and the control network (Fig. 5; Table 8). No
age � time interaction effects were found. Consistent with our

findings of increased participation coefficient in the default
mode, salience/ventral attention, and control networks, we also
found longitudinal increases in the proportion of node types with
high participation coefficient in these three modules. Corre-
spondingly, these modules showed longitudinal decreases in
the proportion of node types with low participation coeffi-
cient (Table 9).

Figure 3. Healthy elderly show cross-sectional and longitudinal reductions in local and global efficiency. A, B, Bar charts indicate mean (�2 SE) global efficiency and local efficiency of young and
elderly participants at baseline. *indicates a statistically significant difference ( p � 0.05) between young and elderly participants at baseline. C, D, Spaghetti plots indicate model-fitted longitudinal
changes in global and local efficiency for each individual. Results displayed are thresholded at p � 0.05. Healthy elderly showed lower local and global efficiency at the whole-brain level compared
with young participants and with time.

Table 4. Cross-sectional analyses: coefficient estimates for group differences in
global measures of integration, segregation, and distinctiveness between young
and elderly

Measure Coefficient SE t p
Validation
resultsa

Global efficiency 9.10e �4 4.38e �4 2.08 0.040* 2,3,4
Local efficiency 3.47e �3 1.06e �3 3.29 1.29e �3* 1,2,3,4
Mean participation

coefficient
�0.010 1.21e �3 �8.31 1.32e �13* 1,2,3,4

System segregation 9.94e �3 1.28e �3 7.79 2.14e �12* 1,2,3,4
aValidation results: 1, effect remains significant ( p � 0.05) after controlling for mean relative motion and number
of volumes; 2, effect remains significant ( p � 0.05) after repeating the analyses in a subset of participants (young:
n � 54; elderly: n � 68) with at least 150 volumes of good-quality imaging data (i.e., �5 min in length) remain-
ing after scrubbing; 3, effect remains significant ( p � 0.05) after maintaining equal scan lengths (123 volumes)
across all participants; 4, effect remains significant ( p � 0.05) after controlling for mean functional connectivity
strength across all edges.

*Statistically significant effects ( p � 0.05).

Table 5. Longitudinal analyses: coefficient estimates for time, age, and age �
time effects on global measures of integration, segregation, and distinctiveness in
elderly

Measure Predictor Coefficient SE t p
Validation
resultsa

Global efficiency Time* �2.76e �4 1.21e �4 �2.28 0.023 2,4
Age 3.57e �5 5.18e �5 0.69 0.490
Age � time 1.32e �6 2.26e �5 0.06 0.954

Local efficiency

Time* �7.73e �4 2.97e �4 �2.60 9.27e �3 1,2,4
Age �8.03e �5 1.26e �4 �0.64 0.524
Age � time 1.76e �5 5.57e �5 0.32 0.752

Mean participation
coefficient

Time* 9.55e �4 2.59e �4 3.69 2.24e �4 1,2,3,4
Age* 3.61e �4 1.20e �4 2.99 2.76e �3 1,2,3,4
Age � time �1.76e �5 4.89e �5 �0.36 0.719

System segregation Time* �9.59e �4 2.68e �4 �3.58 3.40e �4 1,2,3,4
Age* �2.76e �4 1.16e �4 �2.37 0.018 1,3,4
Age � time 3.63e �6 5.06e �5 0.07 0.943

aValidation results: 1, effect remains significant ( p � 0.05) after controlling for mean relative motion and
number of volumes; 2, effect remains significant ( p � 0.05) after repeating the analyses in a subset of
participants (n � 68) with at least 150 volumes of good-quality imaging data (i.e., �5 min in length)
remaining after scrubbing; 3, effect remains significant ( p � 0.05) after maintaining equal scan lengths (123
volumes) across all participants; 4, effect remains significant ( p � 0.05) after controlling for mean functional
connectivity strength across all edges.

*Statistically significant effects ( p � 0.05).
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Association between cross-sectional and longitudinal changes
in graph theoretical measures and cognition of healthy elderly
Among the graph theoretical measures that showed significant
group differences between young and elderly, lower local effi-
ciency and higher mean participation coefficient across all nodes
were associated with worse attention performance, whereas
higher mean participation coefficient in the dorsal attention/con-
trol A network was associated with worse global cognitive perfor-
mance in the healthy elderly after controlling for the effects of age
(Table 10). No cross-sectional associations were found for the
other cognitive domains.

For graph theoretical measures that showed significant longi-
tudinal changes in the elderly, no associations between graph
theoretical measures and performance in any of the six cognitive
measures were found.

Influence of motion, mean connectivity strength, and choice
of methodology on findings
The above findings largely remained after accounting for the ef-
fects of motion and mean connectivity strength (Tables 4 –10).
Specifically, similar findings for both cross-sectional and longi-
tudinal analyses were obtained even after: (1) controlling for
mean relative motion and number of volumes; (2) repeating the
analyses on the subset of participants with at least 5 min of
imaging data after scrubbing; (3) repeating the analyses after
maintaining equal scan lengths across all participants; and (4)
controlling for mean connectivity. In addition, similar obser-
vations in module fragmentation were made particularly be-
tween young and elderly participants at baseline when
repeating the analyses with equal scan lengths maintained
across participants, where group differences in the modular
structure between the two groups remained significant (Fig.
2-1, available at https://doi.org/10.1523/JNEUROSCI.1451-
18.2019.f2-1; Fig. 2-2, available at https://doi.org/10.1523/
JNEUROSCI.1451-18.2019.f2-2).

We also obtained largely similar findings after using different
methodologies (Table 11): (1) repeating the cross-sectional anal-
yses without performing global signal regression; (2) repeating
both cross-sectional and longitudinal analyses using a different
parcellation scheme (389 nodes); and (3) repeating both analyses
using the group-level modular partition based on all young and
elderly participants at baseline.

Figure 4. Healthy elderly show cross-sectional and longitudinal changes in mean participation coefficient and system segregation. A, B, Bar charts indicate mean (�2 SE) participation coefficient
and system segregation of young and elderly participants at baseline. *indicates a statistically significant difference ( p � 0.05) between young and elderly participants at baseline. C, D, Spaghetti
plots indicate model-fitted longitudinal changes in mean participation coefficient and system segregation for each individual. Results displayed are thresholded at p � 0.05. Healthy elderly showed
higher mean participation coefficient across all nodes and lower global system segregation compared with young participants as well as with time.

Table 6. Cross-sectional analyses: coefficient estimates for group differences in
participation coefficient between young and elderlya

Measure Coefficient SE t Uncorr p FDR-adj p
Validation
resultsb

Visual* �0.013 2.29e �3 �5.69 8.54e �8 2.99e �7 1,2,3,4
SomMot/SalVentAttn A* �0.018 2.28e �3 �7.84 1.69e �12 1.18e �11 1,2,3,4
DorsAttn/Control A* �4.58e �3 1.21e �3 �3.77 2.50e �4 4.38e �4 1,2,3,4
SalVentAttn* �5.04e �3 1.54e �3 �3.27 1.39e �3 1.46e �3 2,3,4
Default* �0.013 2.29e �3 �5.50 2.06e �7 4.81e �7 1,2,3,4
Control* �4.32e �3 1.33e �3 �3.25 1.46e �3 1.46e �3 1,2,3,4
Control C/Default C* �5.98e �3 1.82e �3 �3.28 1.33e �3 1.46e �3 2,3,4
aUncorr, Uncorrected; FDR-adj, false discovery rate-adjusted; DorsAttn, dorsal attention; SomMot, somatomotor;
SalVentAttn, salience/ventral attention.
bValidation results: 1, effect remains significant (FDR-adjusted p � 0.05) after controlling for mean relative motion
and number of volumes; 2, effect remains significant (FDR-adjusted p � 0.05) after repeating the analyses in a
subset of participants (young: n � 54; elderly: n � 68) with at least 150 volumes of good-quality imaging data
(i.e., �5 min in length) remaining after scrubbing; 3, effect remains significant (FDR-adjusted p � 0.05) after
maintaining equal scan lengths (123 volumes) across all participants; 4, effect remains significant (FDR-adjusted
p � 0.05) after controlling for mean functional connectivity strength across all edges.

*Statistically significant effects (FDR-adjusted p � 0.05).
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Discussion
The present study used graph theory and community detection
methods to examine cross-sectional and longitudinal changes in
the cortical functional organization of healthy elderly. We found
age- and aging-related decreases in the global measures of net-
work integration, segregation, and distinctiveness. At the modu-
lar level, healthy elderly showed general loss of distinctiveness
and segregation in all modules compared with young partici-
pants, but more specific longitudinal declines in the segregation
of three higher-order cognitive modules: default mode network,
salience/ventral attention network, and control network. Fur-
ther, in the elderly, worse attention performance was associated
cross-sectionally with lower local efficiency and higher mean par-
ticipation coefficient, whereas worse global cognitive performance
was associated with higher participation coefficient in the dorsal
attention/control network. Importantly, the results largely re-
mained, even after repeating the analyses controlling for other
factors (e.g., motion, global signal, and mean connectivity
strength) and using different brain parcellation schemes or mod-
ular partitions. Together, our findings from cross-sectional and

longitudinal cohorts underscore declines in brain functional net-
work segregation and distinctiveness, particularly within mod-
ules supporting higher-order cognitive functions.

Healthy elderly show global decreases in integration
and segregation
Healthy elderly showed decreases in global and local efficiency
with time and compared with young adults, indicating an overall
age- and aging-related reduction in global integration and local
segregation. Our findings are consistent with previous cross-
sectional studies showing lower local efficiency in elderly com-
pared with young adults (Achard and Bullmore, 2007; Song et al.,
2014; Geerligs et al., 2015) and with increasing age (Cao et al.,
2014), and suggests that aging is associated with a reduced ability
for specialized processing within highly connected clusters (Ru-
binov and Sporns, 2010). In terms of global efficiency or network
integration, whereas some studies have similarly demonstrated
lower global efficiency in elderly compared with young adults
(Achard and Bullmore, 2007; Gomez-Ramirez et al., 2015), oth-
ers have reported no age-related changes in global efficiency (Cao
et al., 2014; Song et al., 2014; Geerligs et al., 2015) or even age-
related increases in global efficiency (Chan et al., 2014). In line
with these inconsistencies, age- and aging-related effects on
global efficiency were similarly observed to be weaker compared
with local efficiency in our study. Nonetheless, given that the
cross-sectional and longitudinal changes of global efficiency
largely remained after accounting for the effects of other variables
(e.g., motion) or changes in methodology, our findings provide
limited evidence for global efficiency declines in healthy aging,
suggesting deteriorating information integration as one ages
(Rubinov and Sporns, 2010). However, while our findings
showed some support for aging-related declines in local and
global efficiency, it is important to note that the effects of time on
global and local efficiency, unlike measures of distinctiveness,
were not significant after maintaining equal scan lengths across
participants. As such, our findings suggest that aging-related
changes in global and local efficiency may not be as robust as
aging-related changes in measures of distinctiveness (e.g., partic-
ipation coefficient and system segregation).

Healthy elderly show decreases in module distinctiveness,
especially in higher-order cognitive modules
Our study demonstrated age- and aging-related decreases in
functional network distinctiveness at both the global and modu-
lar level. One major limitation of cross-sectional studies is that
they are confounded by cohort effects and are able to model
change with time only under circumstances of a perfectly stable
environment and absence of cohort differences (Ryder, 1965;
Schaie, 1965, 2005). To this end, longitudinal studies are advan-
tageous because they are able to model intraindividual change as
opposed to cross-sectional studies, which are only able to model
interindividual differences (Schaie, 2005). Using linear mixed-
effects models to model intraindividual changes, we showed that
healthy aging was associated with global declines in segregation
and distinctiveness, with elderly participants showing increased
mean participation coefficient and decreased system segregation
with time. In parallel, compared with young participants, we
found that healthy elderly showed widespread loss of network
segregation and distinctiveness as well as greater proportion of
node types with high participation coefficient and lower propor-
tion of node types with low participation coefficient across all
modules. These cross-sectional group differences are largely con-
sistent with previous findings (Betzel et al., 2014; Chan et al.,

Table 7. Cross-sectional analyses: coefficient estimates for group differences in
proportion of node types between young and elderlya

Measure Coefficient SE t Uncorr p FDR-adj p
Validation
resultsb

Proportion of connector hubs
Visual* �7.21 2.50 �2.88 4.67e �3 0.010 1,2,4
SomMot/SalVentAttn A* �13.51 2.53 �5.34 4.26e �7 1.19e �5 1,2,3,4
DorsAttn/Control A �2.00 2.07 �0.97 0.336 0.392
SalVentAttn* �4.60 2.03 �2.27 0.025 0.039
Default* �9.10 2.54 �3.59 4.74e �4 1.66e �3 1,2,3,4
Control �3.15 2.17 �1.45 0.149 0.190
Control C/Default C �0.25 2.57 �0.10 0.921 0.921

Proportion of satellite connectors
Visual* �5.51 1.63 �3.37 9.87e �4 3.07e �3 1,2,4
SomMot/SalVentAttn A* �7.61 1.99 �3.82 2.05e �4 8.20e �4 1,2,3,4
DorsAttn/Control A* �4.78 1.69 �2.83 5.41e �3 0.011 2,3,4
SalVentAttn �3.27 2.06 �1.59 0.114 0.152
Default* �8.12 1.70 �4.77 4.96e �6 3.47e �5 1,2,3,4
Control �1.55 2.26 �0.68 0.495 0.533
Control C/Default C* �6.02 2.44 �2.47 0.015 0.024 2,3,4

Proportion of provincial hubs
Visual* 8.17 2.66 3.07 2.64e �3 6.44e �3 1,2,3,4
SomMot/SalVentAttn A* 12.88 2.56 5.03 1.68e �6 2.02e �5 1,2,3,4
DorsAttn/Control A 2.65 1.95 1.36 0.178 0.217
SalVentAttn* 5.04 1.52 3.32 1.17e �3 3.28e �3 1,2,3,4
Default* 11.58 2.81 4.13 6.64e �5 3.72e �4 1,2,3,4
Control* 3.23 1.48 2.18 0.031 0.046
Control C/Default C 0.84 1.98 0.43 0.672 0.696

Proportion of peripheral nodes
Visual* 4.55 1.63 2.80 5.97e �3 0.011 2,4
SomMot/SalVentAttn A* 8.23 1.66 4.97 2.16e �6 2.02e �5 1,2,3,4
DorsAttn/Control A* 4.14 1.35 3.05 2.76e �3 6.44e �3 2,3,4
SalVentAttn 2.84 1.63 1.74 0.084 0.118
Default* 5.65 1.47 3.83 2.00e �4 8.20e �4 1,2,3,4
Control 1.46 1.59 0.92 0.360 0.403
Control C/Default C* 5.44 2.10 2.59 0.011 0.019 2,4

aUncorr, Uncorrected; FDR-adj, false discovery rate-adjusted; DorsAttn, dorsal attention; SomMot, somatomotor;
SalVentAttn, salience/ventral attention.
bValidation results: 1, effect remains significant (FDR-adjusted p � 0.05) after controlling for mean relative motion
and number of volumes; 2, effect remains significant (FDR-adjusted p � 0.05) after repeating the analyses in a
subset of participants (young: n � 54; elderly: n � 68) with at least 150 volumes of good-quality imaging data
(i.e., �5 min in length) remaining after scrubbing; 3, effect remains significant (FDR-adjusted p � 0.05) after
maintaining equal scan lengths (123 volumes) across all participants; 4, effect remains significant (FDR-adjusted
p � 0.05) after controlling for mean functional connectivity strength across all edges.

*Statistically significant effects (FDR-adjusted p � 0.05).
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2014; Ferreira et al., 2016; King et al., 2018), although others have
also found decreased segregation only in specific networks (Song
et al., 2014; Zhang et al., 2014; Geerligs et al., 2015). However,
while participation coefficient was increased across all modules in
elderly compared with young, we instead found longitudinal in-
creases in the participation coefficient of three higher-order cogni-
tive networks: default mode, salience/ventral attention, and control
networks. Similarly, the proportion of node types with high partici-
pation coefficient showed longitudinal increases, whereas the pro-
portion of node types with low participation coefficient showed
longitudinal declines in these three modules only.

Together, our findings thus indicate both general and network-
specific aging-related declines in distinctiveness and segregation of
the brain’s functional network architecture. While our previous lon-
gitudinal study only examined connectivity changes in three net-
works and reported specific aging-related increases in internetwork
connectivity between the default mode and control networks (Ng et
al., 2016), our study used a system-level graph theoretical and
community detection approach, which allowed us to characterize
whole-brain connectome-wide functional network integrity by con-
sidering both intranetwork and internetwork connectivity across all
modules. Using this approach, we additionally demonstrated aging-

related system-level changes in the modular organization of the
brain, as evidenced by aging-related increases in mean participation
coefficient and decreases in system segregation. In line with this, we
similarly showed greater fragmentation of the group-level modular
structure, particularly in the higher-order networks, in the elderly
with time and compared with young participants (Fig. 2). These
whole-brain connectome-wide changes suggest that aging is associ-
ated with an overall decline in the distinctiveness and specificity of
brain networks, which may in turn relate to reduced processing ef-
ficiency in the brain (Rubinov and Sporns, 2010). These findings are
also in tandem with the notion that brain regions become function-
ally dedifferentiated with age, which is supported by numerous re-
ports of over-recruitment and reduced selectivity of brain regions for
specific cognitive functions in healthy elderly compared with
younger adults (e.g., Park et al., 2004; Dennis et al., 2008; Goh et al.,
2010). It has been suggested that less efficient neural processing be-
tween brain regions might be the basis for this dedifferentiation pro-
cess in the elderly (Rypma and D’Esposito, 2000; Morcom et al.,
2007; Rypma et al., 2007). The declines in processing efficiency
brought about by reduced distinctiveness of brain networks might
hence underlie the findings of reduced specificity and over-
recruitment of brain regions during tasks in healthy elderly.

Figure 5. Healthy elderly show cross-sectional and longitudinal increases in the participation coefficient of cognitive networks. Bar charts indicate mean (�2 SE) participation coefficient of
young and elderly participants at baseline in the (A) salience/ventral attention network, (B) control network, and (C) default mode network. *indicates a statistically significant difference (false
discovery rate-corrected p � 0.05) between young and elderly participants at baseline. Spaghetti plots represent model-fitted longitudinal participation coefficient changes for each individual in
the respective modules (D–F ), whereas brain maps denote brain regions belonging to each module based on the group-level partition of healthy elderly at baseline. Results displayed are
thresholded at p � 0.05 (false discovery rate-corrected). Healthy elderly showed higher participation coefficient in these three networks compared with young participants and with time, all of
which are key networks involved in higher-order cognitive function.
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Supporting this, a recent study (Chan et al., 2017) showed that age-
related reductions in intrinsic topological distinction (measured by
participation coefficient) between connector and nonconnector
nodes were accompanied by age-related reductions in activation se-
lectivity during task performance, most prominently within associ-
ation and sensory-motor networks.

Additionally, our longitudinal findings revealed that the global
changes in the brain’s modular organization may in part be driven
by specific declines in distinctiveness and segregation of the
higher-order networks (default mode, control, and salience/ventral
attention networks), with module fragmentation particularly pro-
nounced in these networks (Fig. 2). The default mode, salience/ven-
tral attention, and control networks are core networks thought to be
of particular importance in the understanding of higher-order cog-
nitive function and dysfunction (Menon, 2011). These networks are
also among the key networks targeted in aging-associated diseases,
such as Alzheimer’s disease (Greicius et al., 2004; Seeley et al., 2009;
Zhou et al., 2010) and cerebrovascular disease (Kim et al., 2016;
Chong et al., 2017). Our findings thus highlight aging-related vul-
nerabilities of these cognitive networks to functional distinctiveness
and segregation declines and underscore the importance of these
networks in aging and disease.

Finally, while aging is accompanied by declines in functional
distinctiveness and segregation of brain networks, the large-scale
functional organization of the brain appears to remain relatively
intact with age. In the current study, all group-level modular
partitions regardless of age group or time point (i.e., young, el-
derly at baseline and at the second and third time points) showed
high similarity to the a priori modular partition (Yeo et al., 2011).
Moreover, modules identified in these partitions largely map to
the same set of known functional networks (e.g., default mode
network). This is consistent with studies reporting comparable

network organization across the healthy adult lifespan (Chan et
al., 2014, 2017), even when using age cohort-specific parcella-
tions (Han et al., 2018). Nevertheless, we also noted that the
magnitude of similarity to the a priori network partition de-
creased with age (young vs elderly at baseline) and with time
(across time points in the elderly), especially for the higher-order
networks. These findings therefore suggest that specific aging-
related changes in the spatial topology of networks (especially
within higher-order networks) exist, despite the qualitatively
similar architecture throughout the lifespan.

Relationship between loss of functional segregation and
distinctiveness and cognitive impairment
We additionally found some cross-sectional associations between
cognitive performance and lower segregation and distinctiveness
of healthy elderly. Specifically, elderly participants showed worse
attention performance with lower local efficiency and higher
mean participation coefficient, and worse global cognitive per-
formance with higher participation coefficient in the dorsal at-
tention/control network. These findings are in line with previous
cross-sectional studies linking higher age-related internetwork
connectivity and lower functional segregation, particularly in
higher-order cognitive networks, to decreases in cognitive func-
tions, such as executive function and memory (Chan et al., 2014;
Geerligs et al., 2015). However, we did not find this association in
processing speed, executive function, and visuospatial and verbal
memory. This lack of association may likely be due to the nar-
rower age range (58 – 84 years old) of participants with which we
conducted our analyses, as opposed to past studies, which had
examined brain-cognition associations over a wider age range
spanning both young adults and elderly participants. In view of
these mixed findings, our results provide some, albeit limited,

Table 8. Longitudinal analyses: coefficient estimates for time, age, and age � time effects on participation coefficient in elderlya

Measure Predictor Coefficient SE t Uncorr p FDR-adj p
Validation
resultsb

Visual Time 2.57e �4 6.09e �4 0.42 0.673 0.673
Age 2.00e �4 2.38e �4 0.84 0.401 0.458
Age � time �6.05e �5 1.14e �4 �0.53 0.597 0.686

DorsAttn Time 8.24e �4 4.09e �4 2.01 0.044 0.088
Age 1.56e �4 1.84e �4 0.85 0.396 0.458
Age � time �4.76e �5 7.63e �5 �0.62 0.532 0.686

SomMot/SalVentAttn A Time 6.11e �4 4.03e �4 1.52 0.129 0.207
Age 3.50e �4 1.71e �4 2.05 0.040 0.081
Age � time �4.34e �5 7.54e �5 �0.57 0.565 0.686

SalVentAttn Time* 1.50e �3 3.52e �4 4.27 1.97e �5 1.57e �4 1,2,4
Age* 5.16e �4 1.78e �4 2.90 3.73e �3 0.015 1,2,4
Age � time �4.67e �5 6.64e �5 �0.70 0.482 0.686

Limbic Time 3.50e �4 6.29e �4 0.56 0.579 0.661
Age 3.42e �4 3.20e �4 1.07 0.285 0.457
Age � time �8.75e �5 1.15e �4 �0.76 0.449 0.686

Control Time* 1.15e �3 3.35e �4 3.42 6.34e �4 1.69e �3 1,2,4
Age 3.87e �4 1.76e �4 2.19 0.028 0.075
Age � time 3.32e �5 6.33e �5 0.52 0.600 0.686

Control C/Default C Time 2.87e �4 4.30e �4 0.67 0.505 0.661
Age �2.98e �5 1.84e �4 �0.16 0.871 0.871
Age � time 7.73e �5 7.94e �5 0.97 0.330 0.686

Default Time* 1.59e �3 4.20e �4 3.79 1.52e �4 6.08e �4 1,2,3,4
Age* 6.47e �4 2.05e �4 3.16 1.59e �3 0.013 1,2,3,4
Age � time 1.72e �5 7.93e �5 0.22 0.829 0.829

aUncorr, Uncorrected; FDR-adj, false discovery rate-adjusted; DorsAttn, dorsal attention; SomMot, somatomotor; SalVentAttn, salience/ventral attention.
bValidation results: 1, effect remains significant (FDR-adjusted p � 0.05) after controlling for mean relative motion and number of volumes; 2, effect remains significant (FDR-adjusted p � 0.05) after repeating the analyses in a subset of
participants (n � 68) with at least 150 volumes of good-quality imaging data (i.e., �5 min in length) remaining after scrubbing; 3, effect remains significant (FDR-adjusted p � 0.05) after maintaining equal scan lengths (123 volumes)
across all participants; 4, effect remains significant (FDR-adjusted p � 0.05) after controlling for mean functional connectivity strength across all edges.

*Statistically significant effects (FDR-adjusted p � 0.05).
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Table 9. Longitudinal analyses: coefficient estimates for time, age, and age � time effects on proportion of node types in elderlya

Measure Predictor Coefficient SE t Uncorr p FDR-adj p Validation resultsb

Proportion of connector hubs
Visual Time 0.219 0.577 0.38 0.704 0.835

Age �0.170 0.253 �0.67 0.500 0.666
Age � time 0.135 0.107 1.26 0.206 0.847

DorsAttn Time 0.640 0.758 0.84 0.398 0.607
Age 0.034 0.323 0.11 0.916 0.916
Age � time �0.140 0.140 �1.00 0.319 0.847

SomMot/SalVentAttn A Time 0.400 0.709 0.56 0.572 0.796
Age 0.130 0.315 0.41 0.681 0.778
Age � time �0.095 0.132 �0.72 0.471 0.877

SalVentAttn Time 0.856 0.440 1.94 0.052 0.151
Age 0.484 0.199 2.43 0.015 0.063
Age � time �0.092 0.082 �1.12 0.263 0.847

Limbic Time 1.058 0.874 1.21 0.226 0.426
Age 0.379 0.378 1.00 0.317 0.507
Age � time �0.197 0.160 �1.23 0.218 0.847

Control Time* 2.044 0.619 3.30 9.63e �4 7.70e �3 1,2,4
Age 0.508 0.313 1.62 0.105 0.225
Age � time 0.110 0.116 0.95 0.344 0.847

Control C/Default C Time 0.264 0.851 0.31 0.757 0.835
Age �0.205 0.333 �0.61 0.539 0.678
Age � time 0.159 0.155 1.03 0.305 0.847

Default Time* 1.880 0.650 2.89 3.85e �3 0.021 1,2,3,4
Age 0.676 0.290 2.34 0.020 0.063
Age � time 0.126 0.123 1.02 0.306 0.847

Proportion of satellite connectors
Visual Time 0.075 0.453 0.17 0.869 0.894

Age �0.020 0.182 �0.11 0.914 0.916
Age � time �0.031 0.085 �0.36 0.716 0.933

DorsAttn Time 0.677 0.528 1.28 0.200 0.426
Age 0.084 0.202 0.41 0.679 0.778
Age � time 0.041 0.099 0.41 0.682 0.933

SomMot/SalVentAttn A Time* 1.238 0.501 2.47 0.013 0.048 1,4
Age 0.511 0.196 2.61 9.05e �3 0.058
Age � time �0.063 0.093 �0.68 0.494 0.877

SalVentAttn Time* 1.533 0.513 2.99 2.82e �3 0.018 1,2,4
Age 0.566 0.239 2.37 0.018 0.063
Age � time �0.079 0.096 �0.83 0.409 0.872

Limbic Time 0.586 0.830 0.71 0.480 0.698
Age 0.560 0.346 1.62 0.105 0.225
Age � time �0.068 0.153 �0.45 0.655 0.933

Control Time 0.059 0.446 0.13 0.894 0.894
Age 0.565 0.213 2.66 7.86e �3 0.058
Age � time �0.086 0.083 �1.04 0.300 0.847

Control C/Default C Time 0.277 0.767 0.36 0.718 0.835
Age 0.312 0.340 0.92 0.359 0.522
Age � time �0.032 0.140 �0.23 0.817 0.934

Default Time* 1.324 0.479 2.76 5.70e �3 0.026 1,2,3,4
Age 0.512 0.215 2.38 0.017 0.063
Age � time 0.028 0.089 0.32 0.751 0.933

Proportion of provincial hubs
Visual Time �0.321 0.645 �0.50 0.618 0.824

Age 0.070 0.273 0.26 0.796 0.850
Age � time �6.91e �3 0.120 �0.06 0.954 0.967

DorsAttn Time �0.631 0.725 �0.87 0.384 0.607
Age 0.111 0.325 0.34 0.734 0.810
Age � time 0.042 0.134 0.32 0.751 0.933

SomMot/SalVentAttn A Time �1.120 0.740 �1.51 0.130 0.347
Age �0.336 0.300 �1.12 0.262 0.465
Age � time 0.116 0.139 0.84 0.403 0.872

SalVentAttn Time �0.751 0.368 �2.04 0.041 0.132
Age �0.476 0.168 �2.82 4.77e �3 0.058
Age � time 7.35e �3 0.068 0.11 0.914 0.967

Limbic Time �0.883 0.819 �1.08 0.281 0.500
Age �0.345 0.370 �0.93 0.351 0.522

(Table continues)
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cross-sectional evidence that loss of segregation and distinctive-
ness of functional modules might be predictive of age-related
cognitive decline.

Moreover, longitudinal changes in measures of segregation
and distinctiveness were not found to be associated with longitu-

dinal declines in cognition. These findings differed from our ear-
lier study (Ng et al., 2016), which reported in the same
longitudinal elderly cohort a link between faster declines in pro-
cessing speed and greater functional connectivity increases be-
tween the default mode and control networks with time. These
discrepant observations suggest that aging-related declines in
processing speed may perhaps be a consequence of increased
connectivity between specific networks, rather than a general in-
crease in connectivity of one network to all other networks (i.e.,
increased participation coefficient). However, this postulation
remains preliminary and more longitudinal studies are required
to shed light on the association between aging-related changes in
cognition and aging-related changes in brain functional network
architecture. In addition, our current study analyzed functional
network changes using a group-level modular partition, which
would allow for comparison of these changes in a consistent set of
modules across participants. However, many studies have also
demonstrated individual differences in the modular partitions of
functional networks, particularly that of higher-order networks
(Mueller et al., 2013; Gordon et al., 2017; Liao et al., 2017). As
such, using group-level partitions may obscure functional net-
work changes and their associations with cognitive decline. Fu-
ture studies using individualized partitions could account for

Table 9. Continued

Measure Predictor Coefficient SE t Uncorr p FDR-adj p Validation resultsb

Age � time 0.079 0.150 0.53 0.596 0.933
Control Time* �1.854 0.558 �3.32 8.98e �4 7.70e �3 1,2,4

Age �0.893 0.319 �2.80 5.15e �3 0.058
Age � time 4.32e �3 0.105 0.04 0.967 0.967

Control C/Default C Time �0.143 0.698 �0.20 0.838 0.894
Age 0.202 0.286 0.71 0.479 0.666
Age � time �0.164 0.128 �1.28 0.200 0.847

Default Time* �1.665 0.652 �2.55 0.011 0.043 1,2,4
Age �0.723 0.298 �2.43 0.015 0.063
Age � time �0.132 0.123 �1.07 0.284 0.847

Proportion of peripheral nodes
Visual Time 0.132 0.414 0.32 0.750 0.835

Age 0.102 0.171 0.60 0.551 0.678
Age � time �0.072 0.076 �0.95 0.341 0.847

DorsAttn Time �0.665 0.483 �1.38 0.168 0.385
Age �0.225 0.187 �1.20 0.230 0.434
Age � time 0.069 0.090 0.76 0.447 0.877

SomMot/SalVentAttn A Time �0.587 0.403 �1.46 0.145 0.356
Age �0.277 0.151 �1.83 0.067 0.164
Age � time 0.020 0.075 0.27 0.787 0.933

SalVentAttn Time* �1.698 0.443 �3.83 1.28e �4 0.004 1,2,4
Age �0.576 0.215 �2.68 7.27e �3 0.058
Age � time 0.151 0.083 1.83 0.068 0.847

Limbic Time �0.834 0.683 �1.22 0.222 0.426
Age �0.588 0.320 �1.84 0.066 0.164
Age � time 0.166 0.125 1.33 0.183 0.847

Control Time �0.175 0.392 �0.45 0.655 0.835
Age �0.181 0.181 �1.00 0.317 0.507
Age � time �0.021 0.073 �0.29 0.775 0.933

Control C/Default C Time �0.487 0.550 �0.89 0.376 0.607
Age �0.328 0.253 �1.30 0.194 0.387
Age � time 0.053 0.100 0.52 0.600 0.933

Default Time* �1.483 0.444 �3.34 8.39e �4 0.008 1,2,4
Age �0.479 0.209 �2.29 0.022 0.065
Age � time �7.88e �3 0.082 �0.10 0.924 0.967

aUncorr, Uncorrected; FDR-adj, false discovery rate-adjusted; DorsAttn, dorsal attention; SomMot, somatomotor; SalVentAttn, salience/ventral attention.
bValidation results: 1, effect remains significant (FDR-adjusted p � 0.05) after controlling for mean relative motion and number of volumes; 2, effect remains significant (FDR-adjusted p � 0.05) after repeating the analyses in a subset of
participants (n � 68) with at least 150 volumes of good-quality imaging data (i.e., �5 min in length) remaining after scrubbing; 3, effect remains significant (FDR-adjusted p � 0.05) after maintaining equal scan lengths (123 volumes)
across all participants; 4, effect remains significant (FDR-adjusted p � 0.05) after controlling for mean functional connectivity strength across all edges.

*Statistically significant effects (FDR-adjusted p � 0.05).

Table 10. Cross-sectional analyses: coefficient estimates of multiple regression
models showing a significant association between cognition and graph theoretical
measures with significant young-elderly group differencesa

Predictor Coefficient SE t Uncorr p FDR-adj p
Validation
resultsb

Dependent variable: attention
Local efficiency 2.737 1.098 2.49 0.015 — 1,2,3,4
Mean participation coefficient �2.970 1.139 �2.61 0.011 — 1,2,3,4

Dependent variable: global cognitive performance
DorsAttn/Control A �2.004 0.669 �3.00 0.004 0.027 1,4

aUncorr, Uncorrected; FDR-adj, false discovery rate-adjusted; DorsAttn, dorsal attention.
bValidation results: 1, effect remains significant (global measures: p � 0.05; modular measures: FDR-adjusted p �
0.05) after controlling for mean relative motion and number of volumes; 2, effect remains significant (global mea-
sures: p � 0.05; modular measures: FDR-adjusted p � 0.05) after repeating the analyses in a subset of participants
(young: n � 54; elderly: n � 68) with at least 150 volumes of good-quality imaging data (i.e., �5 min in length)
remaining after scrubbing; 3, effect remains significant (global measures: p � 0.05; modular measures: FDR-
adjusted p � 0.05) after maintaining equal scan lengths (123 volumes) across all participants; 4, effect remains
significant (global measures: p � 0.05; modular measures: FDR-adjusted p � 0.05) after controlling for mean
functional connectivity strength across all edges.
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such individual variability and provide a more accurate charac-
terization of aging-related brain-cognitive associations.

Limitations
Our study has several limitations. First, we probed longitudinal
brain functional organization changes in participants aged �55
years. However, cross-sectional studies have shown that loss of
functional network segregation and specialization is present at
ages as early as 40 years (Betzel et al., 2014; Chan et al., 2014).
Second, participants in this study were followed up 2 or 3 times
over a relatively short period of 2–5 years, which does not allow
reliable examination of nonlinear trends. Future longitudinal
studies investigating changes in brain functional organization
would benefit from tracking a broader age range of healthy par-
ticipants over a longer follow-up period. Finally, we used motion
scrubbing in this study to reduce the effects of motion. However,
this resulted in unequal scan lengths across participants, which
may influence the results. Nevertheless, we showed that our main

findings of aging-related network segregation and distinctiveness
loss remained even after repeating the analyses on images where
equal scan lengths were maintained across all participants.

Conclusion
In conclusion, we found that healthy elderly showed cross-
sectional and longitudinal reductions in network integration,
segregation, and distinctiveness. Notably, healthy elderly showed
reduced distinctiveness of all modules compared with young
adults but showed only longitudinal declines in distinctiveness of
three higher-order cognitive modules: control network, default
mode network, and salience/ventral attention network, under-
scoring the importance of these networks in aging. Further, in the
healthy elderly, worse attention performance was cross-sectionally
associated with lower module segregation and distinctiveness,
whereas worse global cognitive performance was cross-
sectionally associated with lower distinctiveness in the dorsal at-
tention/control network. Together, these findings highlight the

Table 11. Comparison of findings using different methodologiesa

Measure

Change in methodology

Group partition based on young �
elderly at baseline, individual gamma � 2,
Group gamma � 2

389 nodes, individual
gamma � 2, Group
gamma � 2 No global regression

Cross-sectional analysis
Global measures

Global efficiency NA Young � Elderly (trend; uncorrected
p � 0.25)

Young � Elderly

Local efficiency NA Young � Elderly (trend; uncorrected
p � 0.06)

Young � Elderly

Mean participation coefficient Elderly � Young Elderly � Young Elderly � Young
System segregation Young � Elderly Young � Elderly Young � Elderly

Modular measures
Participation coefficient Elderly � Young in all modules Elderly � Young in all modules, except Dor-

sAttn/Control A
Elderly � Young in all modules, except SalVentAttn

Proportion of node types Elderly � Young in connector hubs and satel-
lite connectors of most modules

Elderly � Young in connector hubs and satel-
lite connectors of most modules

Inconsistent differences in node types; elderly
showed both increases and decreases in all node
types relative to young adultsYoung � Elderly in provincial hubs and pe-

ripheral nodes of most modules
Young � Elderly in provincial hubs and periph-

eral nodes of most modules
Association with cognition in elderly Worse attention performance associated with Worse attention performance associated with Worse attention performance associated with

� Lower local efficiency � Lower local efficiency � Lower local efficiency (trend; uncorrected
p � 0.06)

� Higher mean participation coefficient � Higher mean participation coefficient � Higher mean participation coefficient (trend;
uncorrected p � 0.16)Worse global cognitive performance associ-

ated with higher participation coefficient in
Control/DorsAttn B (trend; uncorrected
p � 0.08)

Worse global cognitive performance associated
with higher participation coefficient in Con-
trol (uncorrected p � 0.05)

Longitudinal analysis
Global measures

Global efficiency NA Decrease with time NA
Local efficiency NA Decrease with time NA
Mean participation coefficient Increase with time Increase with time NA
System segregation Decrease with time Decrease with time NA

Modular measures
Participation coefficient Increase with time in Increase with time in NA

� SalVentAttn � SalVentAttn
� Default � Default
� Control � Control (uncorrected p � 0.05)

Proportion of node types Increased connector hubs and satellite con-
nectors and decreased provincial hubs and
peripheral nodes with time in

Increased satellite connectors and decreased
provincial hubs with time in

NA

� Default � Default (uncorrected p � 0.05)
� Control � Control (uncorrected p � 0.05)

aDorsAttn, Dorsal attention; SomMot, somatomotor; SalVentAttn, salience/ventral attention; TempPar, temporoparietal. The original analyses were performed on functional images with global regression done and using a functional
parcellation scheme comprising 114 nodes. For the original cross-sectional analysis, the group-level partition was obtained using individual and group gamma of 2 and was based on all young participants. For the original longitudinal
analysis, the group-level partition was obtained using individual and group gamma of 2 and was based on all elderly participants at baseline. Findings described in this table are significant effects (global measures: p � 0.05; modular
measures: FDR-adjusted p � 0.05) unless otherwise stated.
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utility of using longitudinal designs to study brain organization
changes in the elderly and suggest that aging is associated with
reduced functional segregation and distinctiveness, particularly
in higher-order cognitive modules.
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Betzel RF, Byrge L, He Y, Goñi J, Zuo XN, Sporns O (2014) Changes in
structural and functional connectivity among resting-state networks
across the human lifespan. Neuroimage 102:345–357.

Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, Nair VA,
Meyerand ME, Prabhakaran V (2013) The effect of scan length on the
reliability of resting-state fMRI connectivity estimates. Neuroimage 83:
550 –558.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectiv-
ity in the motor cortex of resting human brain using echo-planar MRI.
Magn Reson Med 34:537–541.

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding
of communities in large networks. J Stat Mech 2008:P10008.
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