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A B S T R A C T

Robustly linking dynamic functional connectivity (DFC) states to behaviour is important for establishing the
utility of the method as a functional measurement. We previously used a sliding window approach to identify two
dynamic connectivity states (DCS) related to vigilance. A new sample of 32 healthy participants underwent two
sets of task-free functional magnetic resonance imaging (fMRI) scans, once in a well-rested state and once after a
single night of total sleep deprivation. Using a temporal difference method, DFC and clustering analysis on the
task-free fMRI data revealed five centroids that were highly correlated with those found in previous work. In
particular, two of these states were associated with high and low arousal respectively. Individual differences in
vulnerability to sleep deprivation were measured by assessing state-related changes in Psychomotor Vigilance
Test (PVT) performance. Changes in the duration spent in each of the arousal states from the well-rested to the
sleep-deprived condition correlated with declines in PVT performance. The reproducibility of DFC measures and
their association with vigilance highlight their utility in serving as a neuroimaging method with behavioural
relevance. (178 words).
1. Introduction

Dynamic functional connectivity (DFC) analysis of neuroimaging data
is increasingly being used to study how inter-region connectivity strength
and network configurations evolve over time (Hutchison et al., 2013).
One common approach in DFC analysis is to search within a connectivity
time series (Allen et al., 2014) to identify recurring patterns known as
dynamic connectivity states (DCSs). There is now some evidence that
DCSs contain information that is of behavioural significance. For
instance, on a coarse level, certain DCS have been associated with
wakefulness and sleep (Haimovici et al., 2017; Damaraju et al., 2018),
motivating a more detailed search for states related to other cognitive
domains, such as sustained attention, mind wandering, or even sponta-
neous thoughts (Kucyi et al., 2018).

In the short time since the first reports of time-varying connectivity, a
plethora of different approaches have been proposed to derive DFC es-
timates, each with their own theoretical underpinnings. These ap-
proaches vary along three major dimensions: 1) the transformations
applied to the data, 2) the function used to quantify relationships
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between windows within the time series, and 3) the weighting vectors
applied to the relational computation (Thompson and Fransson, 2018).
Within each type of analysis are parameters that can be tuned (e.g.
window size for analyses involving moving averages, component selec-
tion for ICA approaches). This heterogeneity in methods complicates the
interpretation and comparison of findings, and has made it challenging to
link particular DCS to specific cognitive or behavioural states.

Several reports have been published on the reliability of DFC esti-
mates, reaching the general conclusion that reliability is good for sum-
mary statistics (e.g. average connectivity, percentage of occurrence) and
connectivity features, but relatively lower for derived measures such as
dwell time and transitions (Abrol et al., 2017; Choe et al., 2017; Smith
et al., 2018). However, it is typically these latter measures that are used
in a search for DFC-behaviour relationships. It thus follows that a system
employed to test the robustness of DFC-behaviour associations must be
anchored by a highly reliable behavioural phenomenon.

One such phenomenon is the large declines in sustained attention that
follow acute sleep deprivation (SD) (Lim and Dinges, 2010). Individual
differences in these impairments are stable over time (Leproult et al.,
e; SD, sleep deprivation; RW, rested wakefulness; RSp, reciprocal reaction speed.
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2003; Van Dongen et al., 2004), and this trait-like nature makes them
especially amendable to reproducibility studies. State-related shifts in
BOLD activation in frontoparietal regions are reproducible across two
nights of total SD (Lim et al., 2007). State-related shifts of task activation
and corresponding shifts in sustained attention are also reproducible
within different conditions of the same experiment (Chee and Tan,
2010). These findings make a night of total sleep deprivation an attrac-
tive test bed to study how DFC measures uncovered using one method
generalize across another analysis methodology.

Using static, or time-averaged connectivity analysis, it has been
shown that the brain connectome is less integrated and segregated in SD
(Yeo et al., 2015), and that anti-correlations are particularly relevant
markers of state differences (Samann et al., 2010; De Havas et al., 2012).
Using DFC analysis, Xu et al. (2018) showed that large shifts in the
proportions of dwell times and the transition probability matrix occur in
resting-state data after 36 h of total SD. Separately, two prior DFC studies
have reported DCSs associated with vigilance (the high arousal state
(HAS) and low arousal state (LAS)), showing that these DCSs in the
sleep-deprived state are associated with temporal fluctuations in vigi-
lance at rest and in an auditory vigilance task condition (Wang et al.,
2016), and can be used to predict vulnerability to SD while individuals
are still in a well-rested state (Patanaik et al., 2018).

In the current study, we exploited SD as a tool to test the robustness of
the HAS/LAS behavioural associations across datasets and analysis
methods (i.e. in comparison with our previous published findings).
Specifically, we sought to elaborate on our previous findings by directly
investigating SD-related individual differences in DCSs, and vigilant
attention. To achieve this, we collected task-free fMRI data at baseline
and after 24 h of total sleep deprivation in a group of 32 healthy young
adults. Our primary hypothesis was that following SD, we would observe
reductions in a composite measure calculated from proportions of two
DCSs previously shown to index high and low arousal states (Patanaik
et al., 2018), and that this decrement would correlate with state-related
shifts in vigilance. A third state previously associated with trait mind-
fulness (Lim et al., 2018), and two other unnamed (but reproducible)
states were also tested to demonstrate the specificity of behavioural as-
sociations related to the aforementioned high and low arousal states.
Critically, we used a different method of DFC computation (multiplica-
tion of temporal differences) than in our original reports on DCS rela-
tionship with arousal for all these analyses. Finally, we tested two other
relevant measures that are affected by arousal – global signal variability
and head motion – to assess their independent contribution to predicting
state-shifts in vigilance.

2. Materials and methods

2.1. Participants

32 participants were recruited from the National University of
Singapore through online advertising and word-of-mouth as part of a
larger study to investigate the effects of sleep deprivation. Data from two
of these participants was discarded after the first-pass connectivity
analysis (see below), resulting in a total of 30 participants (15 males;
mean age (sd)¼ 23 (3.59)). All participants were screened for right-
handedness (Oldfield, 1971) and normal or corrected-to-normal vision,
and to ensure they had no history of long-term physical or psychological
disorders. This study was approved by the National University of
Singapore Institutional Review Board, and all participants provided
written informed consent.

2.2. Psychomotor vigilance test

The Psychomotor Vigilance Test (PVT, Dinges, 1995) is a sensitive
measure of sustained attention under conditions of fatigue and sleep loss
(Lim and Dinges, 2008). In the task, participants monitor a rectangular
box in the center of a screen and respond as quickly as possible to the
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appearance of a millisecond counter. The number of lapses (reaction
time> 500ms), and response speed (RSp; reciprocal reaction time, s�1)
on this test are robust markers of vigilance (Basner and Dinges, 2011).
PVT stimuli were presented using Psychtoolbox (Brainard, 1997) in
MATLAB 2012a.

2.3. Study protocol

Participants were invited to the lab for two counterbalanced sessions
held approximately one week apart: a night of rested wakefulness (RW),
where they were required to adhere to a strict 9 h sleep opportunity, and a
night of total sleep deprivation (SD). They were required to maintain a
consistent sleep-wake schedule (to sleep before 00:30 and wake up before
09:00, with approximately 6.5–9 h sleep opportunity a night) for
approximately one week before each of these testing nights; this was
verified by wrist actigraphy (Actiwatch 2, Philips Respironics Inc., Pitts-
burgh, PA) worn on the non-dominant hand for the duration of the study.

Participants arrived at the lab at approximately 19:00 on both
experimental nights, and performed a battery of cognitive tasks (results
not reported). Participants in the SD session were then given compu-
terised tasks every hour to help them stay awake with the PVT given
every other hour. Participants in the RW session were given a 9 h sleep
opportunity. A final PVT was performed in the morning before fMRI
scans at 07:30 for RW sessions after participants were awakened and
given 30min to recover from sleep inertia, and at 06:00 for SD sessions.
This final PVT, compared with baseline performance on the RW night,
was used to measure the effect of SD on vigilance.

2.4. fMRI acquisition

Functional MRI scans were collected on a 3-Tesla Siemens PrismaFit
system (Siemens, Erlangen, Germany) using an interleaved gradient
echo-planar imaging sequence (TR¼ 2000ms, TE¼ 30ms, FA¼ 90�,
FoV¼ 192� 192mm, voxel size¼ 3� 3� 3mm). Thirty-six oblique
axial slices were obtained, and 180 vol were collected for each. Con-
current eye videos were acquired using an MR compatible camera (NNL
EyeTracking Camera, NordicNeuroLab) placed over the right eye. Two
runs of 6min eyes-open task-free scan were collected at the beginning of
an approximately hour-long fMRI scanning session for both RW and SD
conditions. During the task-free scan, participants were instructed to
remain still and keep their eyes open. Pre-recorded wake-up calls
(e.g., “Open your eyes.”) were delivered whenever participants
closed their eyes for more than 10 s. We have previously used this pro-
cedure to ensure that participants remain awake during task-free scans
under conditions of high sleep pressure (Yeo et al., 2015), as this can
confound the results of connectivity analysis (Tagliazucchi and Laufs,
2014). High-resolution structural images were collected using an
MPRAGE sequence (TR¼ 2300ms, TI¼ 900ms, FA¼ 8�, voxel
size¼ 1� 1� 1mm, FOV¼ 256� 240mm, 192 slices).

2.4.1. Task-free fMRI analysis
Task-free scans were preprocessed in accordance to the previously

described procedure in Yeo et al. (2015), using a combination of FSL
(Smith et al., 2004; Jenkinson et al., 2012), SPM (Wellcome Department
of Cognitive Neurology, London, UK), and FreeSurfer (http://sur-
fer.nmr.mgh.harvard.edu; (Fischl, 2012). Briefly, preprocessing steps
involved (i) discarding the first four frames of each run, (ii) slice time
correction, (iii) head-motion correction using rigid body translation and
rotation parameters, (iv) functional and structural images were aligned
using Boundary-Based Registration following FreeSurfer surface recon-
struction. Whole brain, white matter and ventricular masks were then
defined based on structural segmentation, then transformed to subject
space. White matter segmentation was performed with 1-voxel erosion.
(v) Linear trend removal was subsequently performed, with temporal
filtering (0.009–0.08 Hz), and linear regression of spurious signal (white
matter signal and ventricle signal as nuisance regressors, and head



Fig. 1. One night of total sleep deprivation (SD) resulted in A) slower
responding, and B) more lapses (reaction times> 500ms) on a 10-min Psy-
chomotor Vigilance Test (PVT) compared with rested wakefulness (RW).
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motion and whole brain global signal to control for motion, as well as
their derivatives). (vi) Functional data of individual subjects were then
projected onto MNI-152 space, downsampled to 2mm voxels and then
smoothed with a 6-mm full width half maximum kernel. Global signal
regression (GSR) was carried out as a part of the preprocessing pipeline to
remove potential nuisance components in the data (Liu et al., 2017;
McAvoy et al., 2018). Global signal power, or the standard deviation of
the average percentage change in the signal time course of the whole
brain (Wong et al., 2013), was subsequently calculated. We note that GSR
is a controversial preprocessing step in task-free fMRI analysis because it
removes neural signals of interest as well as noise (Murphy and Fox,
2017; Xu et al., 2018). However, our experience has been that GSR is
particularly important when comparing task-free fMRI data across very
different wakefulness states (see Yeo et al. (2015) for examples of global
signal dominating fluctuations in various networks). Head motion is
calculated based on two measures: framewise displacement (FD) and
variance of temporal derivative of time courses over voxels (DVARS;
Power et al., 2012). Volumes having FD> 0.2mm or DVARS >5% were
marked as high motion. As dynamic functional connectivity analysis was
the intended analysis, motion scrubbing – or the removal of high motion
volumes – was not conducted as this removal can have an impact on the
temporal pattern of the underlying functional connectivity (Power et al.,
2015). Instead, one volume before and two volumes after each high
motion volume were also marked, and these frames were interpolated
from surrounding data. No subject was excluded from the analysis for
having more than 50% of total volumes marked as high motion.

2.4.2. Dynamic functional connectivity analysis
DFC analysis was performed using the multiplication of temporal

derivatives (MTD) method described by Shine et al. (2015). 114 cortical
ROIs were first extracted from the 17-network parcellation by Yeo et al.
(2011). The coupling between each pairwise set of 114 ROIs was then
estimated by multiplying the first-derivatives of the averaged BOLD time
series. Connectivity at each time point was then estimated by computing
a simple moving average of the MTD time course using the recommended
window size of 7 TRs, for a total of 168 coupling matrices per participant,
each containing 6441 (114� 113/2) unique coupling values.

Coupling matrices were than concatenated across the 30 participants
and both sleep conditions (RW, SD), and k-means clustering was per-
formed to classify each matrix using squared Euclidean distance as the
cost function. We elected to use a k¼ 5 solution, as recent work using a
large (N¼ 7500) resting-state dataset suggests that this is an optimal
number of clusters (Abrol et al., 2017). Our initial analysis using this
approach revealed two artefactual states consisting of only positive
values that were unique to two individuals. Data from these participants
was removed, and matrices from the remaining 30 participants
re-clustered. To confirm that our centroids were consistent with those
obtained from previous analyses reported by our group (Patanaik et al.,
2018; Lim et al., 2018), we performed Spearman’s correlations between
the two sets of centroids. We also calculated the proportion of the run
spent in each DCS, as well as the number of percentage transitions,
defined as the proportion of frames in the time course that differ in state
classification from one time-point to the next.

2.5. Arousal index

Previous studies have suggested a moderate relationship between
arousal and two particular DCSs, the high and low arousal state (HAS and
LAS respectively; Patanaik et al., 2018). Following the methods reported
there, an arousal index (AI) was calculated as a summary measure of the
proportions of time spent in the HAS (THAS) and LAS (TLAS), using the
formula AI ¼ 1 þ THAS – TLAS.

2.6. Statistical analysis

Statistical analysis was performed using SPSS (version 25, Armonk,
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NY: IBM Corp), and statistical significance for all analysis was set at
α¼ 0.05. Dependent variables of interest from the RW and SD nights
were compared using paired-samples t-tests, specifically: PVT results
(lapses and RSp), proportion of time spent in DCSs, percentage state
transitions, arousal index, global signal, and head motion.

A change score was then calculated for each of these variables (e.g.
Δlapse¼ lapse on SD nights – lapse on RW nights) and Pearson’s corre-
lation was used to assess the linear relationship between the change
scores of PVT performance with proportion of DCSs, percentage state
transitions, AI, and head motion. To control for the effects of global
signal, we entered this variable into a multiple linear regression together
with PVT performance and AI.

3. Results

3.1. Behavioural measures

To establish that the night of total sleep deprivation negatively
affected vigilance, we conducted paired-samples t-tests on lapses (reac-
tion time> 500ms) and reaction speed (RSp) on the PVT. As expected,
participants responded faster in RW compared with SD (Fig. 1A. RSp in
RW: mean(sd)¼ 3.12 s�1 (0.298); RSp in SD: mean(sd)¼ 2.79 s�1

(0.287); t29¼ 4.75, p< .001). Similarly, fewer lapses occurred in RW
compared to SD (Fig. 1B. RW: mean(sd)¼ 3.57 (3.94); SD:
mean(sd)¼ 13.6 (10.28); t29¼ 5.53, p< .001). Due to the non-normal
distribution of lapses, lapses were normalised (Dinges et al., 1997; √n
þ √(nþ1)) prior to subsequent analyses.

As a post hoc analysis to confirm the effects of total sleep deprivation,
wake-up calls were calculated. Unsurprisingly, RW resulted in fewer
wake-up calls than SD scans (RW mean(sd)¼ 0.25 (0.50); SD
mean(sd)¼ 1.43 (1.81)).

3.2. Reproducibility of dynamic connectivity states

Due to the different conditions and methodologies under which the
DCSs were obtained, a comparison between the current DCSs (Fig. 2A)
and those found in prior work was performed using Spearman’s rank-
order correlation to ensure congruence. Consistent with prior findings,
three dynamic connectivity states (DCSs) that resembled the, LAS, HAS,
and the task-ready state (TRS) were reproduced (Patanaik et al., 2018;
Lim et al., 2018); these states were highly correlated with centroids ob-
tained using the MTD method in Lim et al. (2018); rs-TRS¼ 0.89,
rs-LAS¼ 0.90, rs-HAS¼ 0.91) and moderately correlated with centroids
obtained using the sliding-window approach (Patanaik et al., 2018):



Fig. 2. A) Connectivity centroids derived from k-means clustering across all connectivity matrices across rested wakefulness (RW) and sleep deprivation (SD).
Previously described states are the task-ready state (TRS), the high arousal state (HAS), and the low arousal state (LAS). B) Violin plots showing distributions of
proportions of time spent in each state in RW and SD. Significant increases were observed in the time spent in LAS and State 4, and significant decreases seen in time
spent in TRS and State 5.
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rs-TRS¼ 0.77, rs-LAS¼ 0.60, rs-HAS¼ 0.74). The characteristics of the
named states are as follows:

A) The LAS features strong within-network correlations in visuomo-
tor areas and relatively weak anti-correlations between task-
positive networks (dorsal attention network (DAN), ventral
attention/salience network (VAN), executive control network
(ECN)) and the default-mode network (DMN).

B) The HAS features strong within-network connectivity in the DMN,
ECN, VAN, and DAN, as well as strong between-network connec-
tivity between DMN and ECN, and VAN and DAN. Strong anti-
correlations were also found between the DMN and DAN/VAN.

C) The TRS features strong within-network correlations in the DMN
and the VAN, and large anti-correlations between task-positive
networks.

Of note, while the HAS and the TRS have some shared features, the
TRS has previously been associated with trait mindfulness (Lim et al.,
2018), while the HAS and LAS have been associated with fluctuations in
vigilance (Wang et al., 2016), and are predictive of vulnerability to sleep
restriction (Patanaik et al., 2018). The remaining 2 states in the k¼ 5
solution are also reproducible across datasets (Lim et al. (2018):
rs-state4¼ 0.74, rs-state5¼ 0.88; Patanaik et al. (2018): rs-state4¼ 0.66,
rs-state5¼ 0.80), but have not yet been ascribed any functional
significance.

We note that previous work has indicated that sleep episodes in the
scanner can have a substantial influence on task-free fMRI (Tagliazucchi
and Laufs, 2014). While we cannot completely discount that microsleeps
occurred during the task free fMRI runs, this probably did not greatly
affect the results of the connectivity analysis given the low number of
wake-up calls given in both scans.
3.3. Change in dynamic functional connectivity following sleep deprivation

For comparability with previous reports, AI in RW and SD nights was
calculated. Paired-samples t-tests showed that AI was higher in RW scans
compared to SD (t29¼ 2.74, p¼ .010). We computed the total time spent
in each of the five states across RW and SD (Fig. 2B). Of the previously
named DCSs, participants spent significantly less time in LAS on RW than
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SD nights (t29¼ 3.14, p¼ .0039) and more time in TRS on RW than SD
nights (t29¼ 5.32, p< .001). Counter to our expectations, no significant
decrease was found in time spent in HAS on the SD night (t29¼ 1.43,
p¼ .16). Of the unnamed DCSs, participants showed an increase in State
4 after RW (t29¼ 4.53, p< .001), while less time was spent in State 5
following SD (t29¼ 2.92, p¼ .0067).

The percentage of overall transitions also differed between the nights,
with participants transitioning between states more often in the RW
nights than SD nights (Fig. 3A; t29¼ 3.46, p¼ .002).

3.4. Connectivity-behaviour relationships

Central to the current investigation is the relationship between the
effect of sleep deprivation on DFC and on vigilance. To examine this, we
correlated the change scores for PVT performance (ΔRSp and Δlapse)
with those for the proportion of time spent in each DCS. Correlations with
the difference in the percentage transitions and AI were computed as well
to interrogate the effects of more global DFC variables.

Change in percentage LAS (ΔLAS) across sleep conditions correlated
significantly with both ΔRSp (Fig. 4A; r¼�0.64, p< .0001), and Δlapse
(Fig 4B; r¼ 0.43, p¼ .018). Change in percentage HAS (ΔHAS) were also
significantly correlated with both ΔRSp (Fig 4E; r¼ 0.43, p¼ .019), and
Δlapse (Fig 4F; r¼�0.39, p¼ .033), even though the proportion of time
spent in HAS across RW and SD were not significantly different. Changes
in AI (ΔAI) were also significantly correlated to both ΔRSp (Fig. 5A;
r¼ 0.61, p< .0004) and Δlapse (Fig 5B; r¼�0.46, p¼ .012). In contrast,
change in percentage TRS (ΔTRS) did not correlate with eitherΔRSp (Fig
4C; r¼ 0.35, p¼ .056), or Δlapse (Fig 4D; r¼�0.22, p¼ .25). Similarly,
we did not find correlations between changes in percentage State4
(ΔState4) and percentage State5 (ΔState5) and either PVT measure (all
p> .05).

In addition, change in percentage transitions (ΔTransitions) corre-
lated with ΔRSp (Fig 3B; r¼ 0.43, p¼ .017), but not Δlapse (Fig 3C;
r¼�0.23, p¼ .22).

3.5. Changes in global signal

As GS has previously been related to vigilance (Wong et al., 2013), we
analysed this variable to assess its independent contribution to this



Fig. 3. A) Transitions between dynamic connectivity states (DFC) decrease from rested wakefulness (RW) to sleep deprivation (SD). Values reflect the proportion of
volumes when a transition occurred. The change in transition proportion across state (RW –SD) correlates with B) change in reaction speed (ΔRS), and C) change in
normalised lapses (Δlapse).

Fig. 4. Correlations between dynamic connectivity states (low arousal state (LAS), high arousal state (HAS), task-ready state (TRS)) and behaviour (response speed
(RS) and normalised lapses). A-D) ΔLAS and ΔHAS are significantly correlated with both the change in both behavioural metrics across state, while E-F) ΔTRS was not
correlated with behavioural change.
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outcome variable. As expected, GS was significantly lower in RW than SD
(t29¼ 5.86, p< 10�6) (Yeo et al., 2015; Nilsonne et al., 2017). To further
interrogate the relationship between GS and vigilance directly, we per-
formed correlation analysis between changes in GS power (i.e. the
standard deviation of the global signal time course; ΔGSP) and the two
PVT measures. We found that while the ΔGSP correlation with ΔRSp was
below the threshold of statistical significance (Fig. 6A; r¼�0.32,
p¼ .082), there was a significant correlation between ΔGSP and Δlapse
386
(Fig 6B; r¼ 0.42, p¼ .020).
Since ΔGSP was an independent predictor of Δlapse, we entered both

ΔAI and ΔGSP into a multiple linear regression to assess their indepen-
dent contributions to this variable. We found that while with both ΔGSP
and ΔAI predicted Δlapse (R2 ¼ .29, F(2, 29)¼ 5.63, p¼ .009), ΔAI
significantly contributed to the model (β¼�4.98, p¼ .046) but ΔGSP
did not (β ¼ .74, p¼ .079).



Fig. 5. Change in an arousal index (AI ¼ 1 þ THAS – TLAS) across state is significantly correlated with A) changes in response speed and B) normalised lapses.

Fig. 6. Changes in global signal across state are A) not correlated with response speed, but B) significantly correlated with normalised lapses.
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3.6. Changes in head motion

Head motion is a significant source of noise in connectivity analysis
(Power et al., 2012), and also typically increases following sleep depri-
vation. Accordingly, we compared head motion parameters between RW
and SD, and found a trend to more movement in SD (DVARSRW:
mean(sd)¼ 23.29 (2.90); DVARSSD: mean(sd)¼ 24.71 (2.89); t29¼ 1.94,
p¼ .062). Complete information about per subject head motion is re-
ported in Supplementary Table 1. We then examined the possible influ-
ence of head motion on the connectivity-behaviour correlations. Change
scores of DVARS (ΔDVARS) across sleep conditions did not significantly
correspond to bothΔRSp (r¼ .02, p¼ .93) andΔlapse (r¼ .008, p¼ .97).

When entered into a partial correlation,ΔDVARS did not significantly
alter the relationship between ΔAI and ΔGS on PVT measures (ΔAI x
ΔRSp: p¼ .93; ΔAI x Δlapse: p¼ .97; ΔGS x ΔRSp: p¼ .93; ΔGS x Δlapse:
p¼ .97). This finding held when substituting framewise displacement for
DVARS (all p> .05).

4. Discussion

Finding robust links between dynamic functional connectivity and
behaviour is an important on-going endeavour. Here we show that DCS
centroids are reproducible across datasets and analysis methods, and
further demonstrate that total sleep deprivation substantially alters the
profile of these dynamic connectivity states (DCSs) in individuals.
Importantly, these DCS changes are closely tied to behavioural perfor-
mance, as measured by declines in vigilance, the cognitive module that is
most significantly affected by sleep loss (Lim et al., 2010), Decrements in
vigilance were accompanied by decreased occurrence of highly inte-
grated DCSs (e.g. HAS, TRS), and increased proportion of DCSs with low
integration (e.g. LAS). However, only two specific DCSs, those previously
identified as high and low arousal state (HAS/LAS) correlated with
behavioural change. These DCS – behaviour associations remained even
after accounting for the contributions of global signal and head motion.
4.1. DCSs are comparable across sliding window and temporal differencing
methods

Since the first reports of DFC analyses using the sliding window
Pearson’s correlation (SWPC; Handwerker et al., 2012; Allen et al.,
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2014), methodological advancements have created a range of options for
investigators aiming to study connectivity fluctuations (Thompson and
Fransson, 2018). However, few studies to date have performed
head-to-head comparisons of these methods, or assessed the robustness
of findings across approaches.

In the current analysis, we used the multiplication of temporal dif-
ferences method and compared the findings against our previous reports
using SWPC. Encouragingly, we found a similar pattern of information
with high spatial correlations between the two methods across multiple
studies (Lim et al., 2016; Wang et al., 2016; Patanaik et al., 2018). MTD
has been found to be less sensitive to low frequency drifts, due to the
inherent nature of differencing acting as a high-pass filter, but also to have
less signal-to-noise ratio (Ochab et al., 2019). As a result, the susceptibility
of MTD to higher frequency signal (Shine et al., 2015) as compared to
SWPC necessarily means that the properties of the connectivity informa-
tion it contains are different. Nevertheless, the similarity of the spatial
patterns in the resultant centroids lead us to speculate that these specific
state patterns might represent stable “attractor” states (van den Heuvel
and Sporns, 2011) that are indifferent to the frequency of brain infor-
mation that is being sampled. This is a particularly important finding for
those seeking to create a cohort-common, canonical chronnectome (Cal-
houn et al., 2014) to function as an atlas for the neuroimaging community.
4.2. Sleep deprivation affects the profile of DCS occurrence

Having established the comparability of our named DCSs, we next
examined the effect of total sleep deprivation (TSD) on the occurrence of
those states. Following TSD, we found a change in four of the five chosen
states: decreases in the percentage time spent in TRS and state 5, and
increases in the LAS and state 4. Prior work has found distinct patterns of
time-averaged functional connectivity between sleep-deprived partici-
pants and those who received a full night of sleep (Yeo et al., 2015;
Kaufmann et al., 2016), with greater connectivity magnitude apparent
during RW relative to SD (Samann et al., 2010; De Havas et al., 2012; Yeo
et al., 2015). Our findings are largely in line with these reports, as evi-
denced by the significant declines in the occurrence of states with strong
DMN anti-correlations, while states with less DMN anti-correlations
increased following TSD.

A recent study (Xu et al., 2018) using DFC analysis on a group of
subjects who were sleep deprived for 36 h found that DCSs linked
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specifically to RW and SD conditions occurred in different proportions
across sleep conditions. In agreement with our findings, RW-associated
states generally featured greater DMN anti-correlations. We found this
correspondence despite a difference in methodology and the inclusion of
global signal in the Xu et al. (2018) report.

A closer examination of state 4 in our analysis also revealed lower
DMN anti-correlations similar to the LAS, but also high integration of the
salience network – a state that also showed an increase in proportion
following TSD. Due to the role of the salience network in stimulus
detection and subsequent redirection of attention (Seeley et al., 2007),
we propose that the increase in proportion of this DCS might represent
overcompensation by the brain in an attempt to remain awake following
TSD (Doran et al., 2001; Ong et al., 2013).

Of our named DCSs, the HAS was not significantly altered following
TSD, even though it too displayed characteristically strong DMN anti-
correlations with task-positive areas. Prior work has suggested that
these highly integrated organizations might represent a costly, but highly
efficient network to which the brain may enter, either spontaneously or
in response to task demands (Bullmore and Sporns, 2012). The high
spatial similarity between task-based and task-free fMRI DCSs (Wang
et al., 2016) supports this. Indeed, across both sleep conditions, we
observe that LAS occurs at more than twice the rate of HAS. As a rela-
tionship between brain metabolism and task-related arousal has been
previously been found (Bullmore and Sporns, 2012; Freeman et al.,
2009), we speculate from our null finding that a certain proportion of
time must be spent in a metabolically costly state, which we posit might
be the HAS, in order to sustain some level of wakefulness even under
conditions of high homeostatic sleep pressure. This is in line with our
theory that the HAS is a fundamental state that is essential for timely
responding to exogenous stimuli. However, this proposed relationship
between arousal and metabolic cost remains hypothetical, as metabolic
data was not obtained.

4.3. DFC states are an index of individual differences in SD vulnerability

The key finding of this study was that previously defined arousal-
related DCSs were associated with individual differences in vigilance
declines following SD. Specifically, we used an arousal index (AI; Pata-
naik et al., 2018) comprising the proportion of time spent in HAS and LAS
(Wang et al., 2016) and found that decreases in AI were correlated with
decrements in PVT performance. Correlations were also observed be-
tween behavioural changes and the individual constituents of AI.

To date, the strongest links between physiology/behaviour and DFC
metrics have been made in the domains of arousal and vigilance. Con-
nectivity fluctuations can serve as an index of wakefulness and sleep
(Tagliazucchi and Laufs, 2014; Haimovici et al., 2017), and can also
track online arousal levels (Chang et al., 2016). Two particular studies
directly motivated the investigation reported in this experiment. First,
Wang et al. (2016) reported that spontaneous eye closures can be used as
a proxy for arousal due to its long association with vigilance, and the
moment-to-moment fluctuations of this arousal change can be tracked
using the HAS and LAS. In addition, PVT performance was found to have
a positive correlation with the proportion of occurrence in the HAS, and
negatively correlated to the proportion of LAS. Second, an individual’s
proportional preponderance of these two FC states, as combined into the
AI, can be used to predict subsequent vigilance declines over five nights
of sleep restriction (Patanaik et al., 2018).

The current experiment builds on these results by showing that
fluctuations in HAS/LAS proportions are correlated with SD vulnerability
when sleep pressure is manipulated experimentally, strengthening the
case that these specific states robustly index levels of vigilance. This is
important, as a variable that predicts a future outcome may not neces-
sarily be the same variable that changes when that outcome is realized.

The interest in individual differences in SD vulnerability originates
from behavioural observation that, over multiple nights of SD, declines in
vigilance are stable within individuals but highly variable between them
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(Van Dongen et al., 2004). Hypoactivation in dorsal attention areas is
also stable over multiple SD nights (Lim et al., 2007), suggesting that
fMRI may effectively capture this vulnerability. Supporting this, fMRI
activity in frontoparietal regions, visual cortex, and the thalamus is
attenuated during PVT lapses following SD, as compared to behaviourally
similar lapses following normal sleep (Chee et al., 2008). In that exper-
iment, slower responses during SD elicited lower activity in both intra-
perietal sulcus and inferior occipital cortex, whereas lower activity was
found only in inferior occipital cortex for faster responses.

These results notwithstanding, there is still a lack of evidence directly
linking brain activity to individual differences in SD vulnerability in the
domain of vigilance, which is most substantially affected by acute sleep
deprivation: most research to date has focused on selective or orienting
attention (Ma et al., 2015). Our current findings provide some data to
bridge that knowledge gap, robustly linking two DCSs to this trait-like
phenomenon.

While it may appear contradictory that %HAS correlates with SD
vulnerability without significantly decreasing in the SD state, this in fact
reinforces the idea that some proportion of HAS is essential to maintain
engagement with the external environment. In other words, declines in
vigilance might be necessary, but not sufficient to cause significant re-
ductions in HAS. Future research might investigate longer durations of
SD to interrogate whether significant HAS declines occur in parallel with
more serious cognitive failure (e.g. PVT timeouts of >30 s).

DCS-vigilance correlations were not observed in any of the non-
arousal related states, even though their proportions changed signifi-
cantly following SD. Of the three remaining non-arousal states, we have
previously described the TRS as being related to trait mindfulness (Baer
et al., 2008): individuals who scored higher on a test of objective
mindfulness spent more time in this state (Lim et al., 2018). Interestingly,
while mindful individuals also have greater attentional capacity and
show superior performance on the PVT (Wong et al., 2018), this associ-
ation is not seen in the current dataset, in which the PVT declines over SD
are driven by decreases in arousal and not mindfulness. This dissociation
is further evidence supporting the specificity and sensitivity of our named
DCSs. Finally, declines in self-reported mindfulness have been reported
following multiple-day sleep restriction (Campbell et al., 2018), and this
is in line with our observation of significant decreases in TRS following
SD. However, the lack of mindfulness measures in our current cohort
renders this explanation speculative.

4.4. Decrease in state transitions after sleep deprivation are also associated
with behaviour

In exploratory analysis, we found that change in PVT performance
across state was correlated with the change in the percentage of state
transitions during task-free scans. We have previously proposed a link
between state transitions and the ability of the brain to refocus attention
(Lim et al., 2018), which may represent a marker of cognitive flexibility
(Li et al., 2017; Marusak et al., 2018); this theory is supported by data in
macaques showing that sedation is associated with a loss of the rich
repertoire of states seen in wakefulness (Barttfeld et al., 2015). The
negative effects of sleep deprivation on cognitive flexibility are well
known (Harrison and Horne, 1999; Durmer and Dinges, 2005), with
increasing sleep pressure interfering with top-down executive function
maintained by the prefrontal cortex (PFC). In addition to PFC dysfunc-
tion, SD is associated with more variable cognitive performance as the
top-down drive to remain vigilant competes with the homeostatic drive
to fall asleep (Doran et al., 2001; Goel et al., 2009), a phenomenon that
has been termed wake-state instability.

Wake-state instability predicts that more frequent transitions would
be observed in the connectivity time course following SD, reflecting more
rapid switches between dorsally generated RW-associated states and
centrally generated sleep-promoting ones. For example, in an fMRI study
of attentional lapsing, Chee et al. (2008) showed that periods of
fronto-parietal hypoactivation and thalamic compensation after SD were
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interspersed among trials that were comparable with the rested state.
Unexpectedly, this was not what we observed in the current dataset –
transitions between DCSs decreased in the SD state. One possible reason
for this finding is that the moving average in our DFC analysis smoothed
over the more abrupt state transitions associated with wake-state insta-
bility, and the remaining decreases in DCS transitions more exclusively
reflect top-down executive failure to refocus attention. A more plausible
explanation may be that unstable brain dynamics are only observable
when a participant is challenged with a task and not in an unconstrained
task-free fMRI scan in an environment that favours falling asleep.

4.5. No additional predictive information from other physiological metrics
to individual differences in vigilance decline

Aside from our primary analysis, we interrogated two other variables
known to change after SD to control for these potential confounds.

The relationship between global signal (GS) and vigilance has been
the subject of numerous studies (Wong et al., 2013), and has been found
to be predictive of vulnerability to SD (Patanaik et al., 2018). Our results
suggest that there might be a more nuanced relationship between GS,
DCS, and arousal. While we found a significant univariate correlation
between GS and with change in lapses, GS did not contribute a significant
incremental effect to predicting SD vulnerability whenmodelled together
with AI. In contrast, prior work found that both global signal and AI as a
whole predicted changes in vigilance decline (Patanaik et al., 2018).
Since GS fluctuations have previously been associated with transitions
between states of varying arousal (Liu et al., 2018), we propose that our
null findings may be due to significant overlaps between the contribu-
tions of GS and AI. In a similar vein, head motion is also found to have a
null contribution to the relationship between AI, vigilance, and GS. Given
that GS and head motion are closely related as well (see Laumann et al.,
2017), the lack of independent contribution from head motion is
unsurprising.

4.6. Reanalysis excluding participants with substantial eye closures and
head motion

In our dataset, one participant had substantial amounts of eye closure
during the task-free fMRI scans, and 6 participants had >10% of inter-
polated frames due to head motion (Supplementary Table 1). On the
request of a reviewer, we reanalysed the data excluding these subsets of
participants; this analysis is presented in Supplementary Table 2. Virtu-
ally all of the main results remain unchanged in these analyses, further
suggesting that our findings were not driven by head motion or eye
closure artifacts.

5. Conclusion

In summary, we have established that total sleep deprivation affects
the occurrence of specific DCSs that may relate to arousal. Converging
evidence from several studies suggests that these DCSs are consistently
detected across analysis methods, and can meaningfully be used as an
index of arousal to track changes in vigilance following total sleep
deprivation.
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