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ABSTRACT
BACKGROUND: Disentangling psychopathological heterogeneity in schizophrenia is challenging, and previous
results remain inconclusive. We employed advanced machine learning to identify a stable and generalizable
factorization of the Positive and Negative Syndrome Scale and used it to identify psychopathological subtypes as well
as their neurobiological differentiations.
METHODS: Positive and Negative Syndrome Scale data from the Pharmacotherapy Monitoring and Outcome Survey
cohort (1545 patients; 586 followed up after 1.35 6 0.70 years) were used for learning the factor structure by an
orthonormal projective non-negative factorization. An international sample, pooled from 9 medical centers across
Europe, the United States, and Asia (490 patients), was used for validation. Patients were clustered into
psychopathological subtypes based on the identified factor structure, and the neurobiological divergence between
the subtypes was assessed by classification analysis on functional magnetic resonance imaging connectivity
patterns.
RESULTS: A 4-factor structure representing negative, positive, affective, and cognitive symptoms was identified as
the most stable and generalizable representation of psychopathology. It showed higher internal consistency than the
original Positive and Negative Syndrome Scale subscales and previously proposed factor models. Based on this
representation, the positive–negative dichotomy was confirmed as the (only) robust psychopathological subtypes,
and these subtypes were longitudinally stable in about 80% of the repeatedly assessed patients. Finally, the
individual subtype could be predicted with good accuracy from functional connectivity profiles of the ventromedial
frontal cortex, temporoparietal junction, and precuneus.
CONCLUSIONS: Machine learning applied to multisite data with cross-validation yielded a factorization generalizable
across populations and medical systems. Together with subtyping and the demonstrated ability to predict subtype
membership from neuroimaging data, this work further disentangles the heterogeneity in schizophrenia.

Keywords: Brain imaging, Machine learning, Multivariate classification, Non-negative factorization, Schizophrenia,
Subtyping
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Schizophrenia is a heterogeneous disorder with marked
interindividual variability of psychopathology, which is related
to treatment response and long-term outcomes (1,2). Earlier
clinical subtypes (e.g., hebephrenic, paranoid) were eliminated
in recent nosological classifications owing to poor diagnostic
stability, validity, and utility (3). Considerable efforts have been
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devoted to better understand and categorize schizophrenia
phenomenology by factorizing symptoms into cardinal di-
mensions or clustering patients into psychopathological sub-
types based on scales such as the Positive and Negative
Syndrome Scale (PANSS), a well-established assessment of
schizophrenia psychopathology (4).
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The 3 PANSS subscales (negative, positive, and general
psychopathology) are generally suggested to not optimally and
adequately capture the latent organization of schizophrenia
symptomatology; items within a subscale show modest inter-
nal consistency (5), while those across subscales are strongly
correlated (6–8). Previous factorizations of the PANSS have
been inconsistent, advocating solutions between 4 and 7
factors (6–11). Although a 5-factor structure was most
frequently proposed (9–12), it has continuously failed to be
confirmed in independent samples (12–15). Interpretations of
previous factor models are, furthermore, complicated by lack
of sparsity (all items contribute to any factor) (16) and by
coexistence of positive and negative weights (17). Finally, most
previous studies investigated rather small and geographically
restricted samples, raising doubts over generalization to
different populations and medical systems because systematic
cross-validation to assess stability and generalizability have
rarely been performed. Previous work on psychopathological
subtyping is likewise inconclusive (18–20), with added con-
cerns related to longitudinal stability and neurobiological
differentiability. These aspects are particularly relevant in the
emerging context of precision psychiatry and raise the
following questions: Do psychopathological subtypes repre-
sent stable patient characteristics, and do they relate to
divergent neurobiological substrates that are identifiable from
brain imaging data? Functional magnetic resonance imaging
(fMRI) parameters may serve as an endophenotype, under-
pinning the symptomatic heterogeneity (21), which has added
ample valuable insights into the neural pathophysiology of
schizophrenia and its relation to clinical presentations (22,23).
However, whether and to what extent the brain functional
connectivity (FC) could discriminate psychopathological sub-
types remains unknown. A successful classification using
endophenotypical characteristics would support distinctive-
ness of symptomatically derived schizophrenia subtypes
expressed along the cardinal axes of psychopathology.

In the current study, we addressed the aforementioned
questions as follows: 1) a robust, cross-validated, and inter-
pretable factor structure of schizophrenia psychopathology was
identified based on PANSS scores of more than 2000 patients
using an unsupervised machine learning approach (orthonormal
projective non-negative matrix factorization [OPNMF]) (24–27);
2) core schizophrenia subtypes were derived by applying soft
clustering to the identified factor structure, whose longitudinal
stability was evaluated in repeatedly assessed patients; and 3)
neurobiological differentiation of those subtypes based on
resting-state FC (rsFC) patterns was investigated by cross-
validated classification analysis, serving as a biological valida-
tion of a clinical (multivariate) construct.

METHODS AND MATERIALS

Sample

We used 2 large datasets collectively providing individual-item
PANSS scores for 2035 patients with schizophrenia: 1) a
subset of 1545 patients (586 followed up after 1.35 6 0.70
years) with complete individual-item PANSS scores and a
diagnosis of schizophrenia (DSM-IV criteria) retrieved from the
Pharmacotherapy Monitoring and Outcome Survey (PHA-
MOUS) database (28,29) (this dataset was recruited from 4
2 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
institutions located in The Netherlands and assessed with a
uniform protocol); 2) a deliberately heterogeneous sample
pooled from 9 centers located in Europe, the United States,
and Asia (490 patients) (Table 1 and Supplemental Table S1).
This international dataset covers a broad range of clinical
states, settings, and medical systems, making it ideal to
evaluate the generalization of our factor model to new and
diverse populations. Diagnoses in the international sample
were established based on the DSM-IV, DSM-IV-TR, or DSM-5
criteria (Supplement). At all sites, data were acquired in
accordance with the Declaration of Helsinki and after obtaining
informed consent from the patients. Approval for the pooled
reanalysis was obtained from the ethics committee of the
Heinrich Heine University Düsseldorf.
Factorization of PANSS Using OPNMF

OPNMF (25,27) decomposes given data (PANSS) into 2 non-
negative matrices: 1) a basis matrix (dictionary) with factors
as columns that can be readily generalized to new data owing
to the projective constraint and 2) a factor-loading matrix
representing symptomatology of individual patients along
these factors. The orthonormality constraint promotes a
sparse, and hence interpretable, representation. For choosing
the number of factors, a set of sophisticated evaluation stra-
tegies was implemented (see Supplement and Supplemental
Figures S1 and S2).

We first applied OPNMF to the PANSS scores from the
1545 PHAMOUS patients with the number of factors ranging
from 2 to 11. The optimal number of factors was identified by
using cross-validation in 10,000 split-half analyses. The PHA-
MOUS sample was split into two halves, and on each split
sample OPNMF was performed to derive the dictionary. The
congruency between item-to-factor assignments, based on its
largest coefficient, was assessed using the adjusted Rand in-
dex (30) and variation of information (31) along with the
concordance index (32) between the dictionaries. We also
quantified out-of-sample reconstruction error by projecting the
data of one split sample onto the dictionary from the other split
sample. A lower increase in out-of-sample error compared with
within-sample reconstruction error indicates better generaliz-
ability. This split-sample analysis was repeated on the inter-
national dataset. Additional bootstrap and 10-fold
cross-validation analyses were conducted on each of the 2
samples independently.

Most critically, we assessed stability and generalizability
between the factorizations of the PHAMOUS sample (good for
learning a structure owing to size) and the international sample
(good for validation owing to heterogeneity). We performed
OPNMF independently on the bootstrapped samples from each
dataset. The resulting factorizations were then compared using
the approaches described above. That is, for each number of
factors, we assessed stability by comparing the dictionaries
obtained from factorization of bootstrapped samples (PHA-
MOUS vs. international). Most important, we also evaluated
generalization to new data by measuring the increase in
reconstruction error for the international data following projec-
tion onto the PHAMOUS dictionary. This cross-sample evalu-
ation was repeated after accounting for between-dataset
differences in sample size, age, and illness duration
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Table1. Demographic and Clinical Characteristics of the Patients With Schizophrenia

Characteristic
PHAMOUS

Sample (N = 1545)

International Dataset
From Nine

Centers (N = 490)

International Dataset
With Imaging
(N = 147) Statistic p Value

Demographic

Age, yearsa 44.15 (11.42) 33.82 (10.28) 34.89 (11.67) 183.51 ,.001

Gender, male/female, n 1108/437 333/157 102/45 2.45 .292

Illness duration, yearsb 18.22 (10.54) 9.13 (8.98) 11.37 (10.36) 134.71 ,.001

PANSS

Positivec 12.48 (4.91) 14.24 (5.76) 15.36 (5.50) 37 ,.001

Negative 14.60 (6.20) 14.67 (7.21) 15.07 (6.06) 0.375 .687

Generald 26.70 (8.16) 29.10 (11.34) 30.93 (10.97) 23.67 ,.001

Symptom severity, total PANSS scoree 53.78 (16.35) 58.01 (21.87) 61.36 (19.57) 19.48 ,.001

P3 item scoref 2.30 (1.47) 2.66 (1.83) 3.22 (1.91) 28.18 ,.001

Medicationg

Atypical antipsychotics NA 167 (34.1%) 110 (74.8%)

Typical antipsychotics NA 26 (5.3%) 8 (5.4%)

Both atypical and typical antipsychotics NA 16 (3.3%) 9 (6.1%)

None or unknown NA 281 (57.3%) 20 (25.9%)

Current antipsychotic medicationh NA 19.64 (14.15) 19.30 (12.57)

Data are mean (SD) or n (%). p Values of ,.001 indicate a significance of p , .05. Except for gender, which was based on c2 test, all other
statistics were based on 1-way analyses of variance. Of note, because the detailed medication information was missing for several patients in
different proportions for those with or without imaging data in the international dataset, statistical comparisons were not conducted.

Post hoc analysis after 1-way analyses of variance showing significant pairwise differences among the 3 datasets are indicated in the footnotes.
NA, not available; PANSS, Positive and Negative Syndrome Scale; PHAMOUS, Pharmacotherapy Monitoring and Outcome Survey; P3 item

measures hallucinatory behavior.
aPHAMOUS . international sample = international sample with imaging at p , .05, Bonferroni corrected.
bPHAMOUS . international = international with imaging at p , .05, Bonferroni corrected. Information of illness duration was available for 1326

patients in the PHAMOUS sample and 393 patients in the international sample.
cPHAMOUS , international sample = international sample with imaging at p , .05, Bonferroni corrected.
dPHAMOUS , international sample = international sample with imaging at p , .05, Bonferroni corrected.
ePHAMOUS , international sample = international sample with imaging at p , .05, Bonferroni corrected.
fPHAMOUS , international sample , international sample with imaging at p , .05, Bonferroni corrected.
gA total of 211 patients with medication information in the whole international sample. A total of 149 patients also with illness duration information

were included in the analysis of variance.
hDemonstrated in olanzapine-equivalent dosage (mg/day).
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(Supplement). Leave-one-site-out validation was performed on
both the PHAMOUS and international samples to check for site
bias. We also repeated all analyses after removing outliers or
including the repeated PANSS measurements (Supplement).
Factorizations of the pooled (PHAMOUS 1 international) sam-
ple, as well as the stability and accuracy of PHAMOUS-
generated dictionaries in estimating out-of-sample loadings or
item scores, were also assessed (Supplement).

After identifying the optimal PANSS factorization, the in-
ternational sample was projected onto this PHAMOUS-derived
dictionary to obtain factor loadings for subsequent analyses
(except for longitudinal analysis because reassessments were
available only in the PHAMOUS sample) to avoid double dip-
ping or leakage that would occur if scores were analyzed in the
same dataset used to derive the dictionary.

Internal Consistency and Relationship Among
Variables

Internal consistency of the optimal OPNMF model, as well as
the PANSS subscales (as reference), was assessed using
Cronbach’s alpha, where higher values indicate more closely
B

related items within a set. Relationships between the OPNMF
factor loadings were assessed using linear and partial correla-
tions (controlling for symptom severity, i.e., total PANSS score),
including bootstrap stability analyses (Supplement). The
OPNMF factor loadings were correlated with the 3 PANSS
subscales. Correlations between individual items were also
computed. For comparison, we performed an exploratory factor
analysis (EFA) on the PHAMOUS sample and a confirmatory
factor analysis on the international sample as well as a principal
component analysis on both samples (Supplement). Effects of
gender, age, illness duration, and symptom severity on the
OPNMF factor loadings were analyzed in the international
sample (N = 393 with complete information). Following a
multivariate analysis of variance to assess effects on all the
loadings, individual 4-way analyses of variance (ANOVAs) were
performed on each loading to identify its association with the
demographic and clinical features (corroborated by bootstrap
and leave-one-site-out analyses) (Supplement). Current drug
dosages of antipsychotic medication, available for 149 patients,
were olanzapine-equivalent transformed (33) and included in
the 4-way ANOVA models for a supplementary analysis.
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 3

http://www.sobp.org/journal


Machine Learning Models of Schizophrenia Psychopathology
Biological
Psychiatry
Psychopathological Subtypes

After adjusting for age, gender, illness duration, and symptom
severity, factor loadings were used as features for clustering
patients into psychopathological subtypes. After confirming
the data clusterability (34), we applied fuzzy c-means clus-
tering (35), which provided cluster membership likelihoods for
all patients. The optimal cluster number was determined based
on the fuzzy silhouette index (36), the Xie and Beni index (37),
and partition entropy (35). Stability was tested by leave-one-
site-out replication, subsampling, and bootstrap resampling
(Supplement). Given the heterogeneous nature of schizo-
phrenia and the observation of multiple patients with ambig-
uous memberships, a cutoff over the membership likelihoods
was adopted to remove cluster-ambiguous patients. For this,
additional evidence from Gaussian mixture modeling (GMM)
was considered. Specifically, patients were clustered again
using GMM, and the optimal cluster number was determined
by Bayesian information criterion (38). After assigning patients
to the clusters, we took the intersection of the c-means and
GMM results. A cutoff was chosen, based on the c-means
membership likelihoods that well discriminated the patients
inside the intersection from those outside, while also retaining
a decent sample size for classification. This filtering step is
critical because ambiguous patients might obscure otherwise
classifiable rsFC patterns for the identified subtypes. After-
ward, differences between subtypes regarding factor loadings
and demographic and clinical features were ascertained by
permutation tests (39). To assess longitudinal stability, the
same c-means clustering was applied to the repeated as-
sessments of the PHAMOUS sample. The optimal dictionary,
identified on the 1545 PHAMOUS patients without repeatedly
assessed PANSS scores, was used for projection to yield the
factor loadings. After excluding ambiguous cases, patients
assigned to the same clusters in both initial and follow-up
stages were regarded as longitudinally stable (Supplement).
For comparison, the same clustering was also performed on
the factor loadings without any covariates or symptom severity
adjustment as well as on the PANSS subscales or items both
with and without covariates adjustment (Supplement).

Classifying Psychopathological Subtypes From
rsFC

Multivariate classification analysis was conducted on patients
from the international sample for whom imaging data were
available after excluding those with ambiguous subtype
assignment, low image quality, or excessive head motion (n =
84) (Supplemental Figure S24). After standard preprocessing
(Supplement), regional time series were extracted based on a
parcellation scheme with 600 cortical parcels (40) and 36
subcortical parcels (41), adjusted for confounders (42), and
were used to compute the functional connectome. We tested
each parcel for whether its pattern of rsFC to all other parcels
allowed classifying subtype membership in novel subjects.
Resulting parcelwise accuracies yielded a whole-brain map
indicating the classifiable power of each parcel’s connectivity
profile. The radial basis function kernel support vector machine
classifier, which can deal with the potentially nonlinear rela-
tionship between the psychopathological and neural spaces,
was employed. A stratified 10-fold cross-validation was
4 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
implemented to assess the out-of-sample classification per-
formance (Supplemental Figure S25). Effects of age, gender,
site, illness duration, symptom severity, and head-motion pa-
rameters were adjusted using a linear regression model fitted
only in the training sample (43). Significance of the parcelwise
accuracy was estimated by permutation tests, followed by
false discovery rate correction for multiple comparisons
(Supplement). Parcels surviving false discovery rate were
functionally characterized (http://brainmap.org/) (44)
(Supplement).

RESULTS

Dimensions of Psychopathology

The most robust and generalizable model consisted of 3 fac-
tors for the PHAMOUS sample (Figure 1A), which effectively
combined the positive and affective symptoms compared with
the optimal 4-factor model for the international dataset
(Figure 1B). The additional factor in the international dataset
may relate to the higher prevalence of psychotic symptoms,
particularly auditory hallucinations, compared with the PHA-
MOUS sample, which contains more long-term patients
(Table 1). Consequently, a 4-factor model was identified as the
most stable and, importantly, generalizable model of psycho-
pathology in the cross-sample evaluation (Figure 1C). The first
factor mainly represents negative symptoms such as blunted
affect and apathy (Figure 1D). The second factor represents
positive symptoms such as delusions and hallucinations. The
third factor comprises symptoms such as depression, anxiety,
and tension, reflecting an affective dimension. The fourth fac-
tor represents cognitive impairments. Notably, only a few items
contributed to multiple dimensions (e.g., active social avoid-
ance contributed to both negative and affective factors).

All findings were fully confirmed by 1) bootstrap and 10-fold
cross-validation, 2) removing outliers (18 patients), 3) adding
PANSS data from follow-up examination in the PHAMOUS
sample, 4) leave-one-site-out validation, 5) accounting for
between-dataset differences in sample size, age, and illness
duration, 6) pooling the 2 datasets with cross-validation and
out-of-sample generalization assessments, and 7) loading or
item score predictions across factor solutions, bootstrapped
samples, and sites (Supplemental Figures S3–S11).

Internal Consistency and Relationship Among
Variables

Items within a factor showed higher and more homogeneous
positive correlations (and fewer anticorrelations) for the
OPNMF factors than for the PANSS subscales (Figure 2A, B
and Supplemental Figure S12). Internal consistency of our
OPNMF 4-factor structure (positive: Cronbach’s alpha = .75;
negative: .92; affective: .85; cognitive: .83) was on average
higher than that of the PANSS subscales (positive: .72; nega-
tive: .87; general psychopathology: .87), previously reported
factor models (ranging from .60 [excited] to .90 [negative])
(7–9,45), and the EFA models derived from the current sample
(.49–.91) (Supplemental Table S2). All PHAMOUS-derived 4- to
7-factor EFA models could not be confirmed in the interna-
tional sample owing to inadequate fit (Supplemental Table S2).
Compared with principal component analysis, OPNMF showed
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Figure 1. Split-half cross-validation (10,000 repetitions) of stability and generalizability of the factor solutions derived by orthonormal projective non-
negative matrix factorization. The 3 indices—adjusted Rand index (aRI), variation of information (VI), and concordance index (CI)—demonstrate the factor
stability, while out-of-sample increased reconstruction error (RE) reflects the performance of generalizability. Box plots show stability and generalizability
results of the factor solutions. Higher values for aRI and CI (upper row) indicate higher stability. Lower values for VI and out-of-sample increase in RE (bottom
row) indicate better stability and generalizability, respectively. For the box plots, the red line depicts the median, the green diamond depicts the mean, and the
whiskers represent the 5th and 95th percentiles. For the factor models, the weight of an item in assigning to a specific psychopathological factor (columns of
the matrix) is color-coded according to the coefficients by a heat color map from gray (minimum) to dark red (maximum). (A) The best factor solution derived
from the Pharmacotherapy Monitoring and Outcome Survey (PHAMOUS) data (1545 patients) is shown. According to the 4 aforementioned evaluation indices,
a 3-factor model was indicated as the best because both the mean and median values for VI and out-of-sample increase in RE achieve the lowest, while the aRI
and CI reach the highest, at that point. (B) The best factor solution derived from the international sample (490 patients) is shown. Four factors is the optimal
solution because the mean and median values of VI and out-of-sample increase in RE achieve the local minimum, while the aRI reaches maximum and the CI
reaches a local maximum. (C) The best factor solution identified by the bootstrap comparison of the two datasets (PHAMOUS vs. international) is shown. A 4-
factor solution is optimal because the mean and median values of the aRI and CI reach the maximum, while the mean and median values of VI and the median
value of out-of-sample increase in RE achieve the minimum. (D) The most stable and generalizable 4-factor structure derived from the PHAMOUS sample,
serving as the best basis for future studies, is shown. This 4-factor model consists of a negative (factor 1), a positive (factor 2), an affective (factor 3), and a
cognitive (factor 4) factor that were named based on the items they contained. PANSS, Positive and Negative Syndrome Scale.
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better generalizability (Supplemental Figure S13). The positive
and negative factors were highly correlated with the positive
and negative PANSS subscales, respectively, both before (r =
.92 and r = .97) and after (r = .85 and r = .89) controlling for
symptom severity (Supplemental Figure S14). Interestingly,
after adjusting for symptom severity, the cognitive factor did
not correlate with general psychopathology (r = .02).

Over individual patients, the loadings on our 4 factors were
significantly intercorrelated, with negative and positive factors
showing the lowest correlation (r = .32 averaged over 10,000
bootstraps) and negative and affective factors showing the
highest correlation (r = .70) (Figure 2C). After controlling for
symptom severity, positive and negative factors became
anticorrelated (r = 2.59) (Supplemental Figure S15).
B

Multivariate analysis of variance revealed a significant in-
fluence of symptom severity on the joint factor loadings (p ,

.001). Follow-up 4-way ANOVAs showed that symptom
severity had a significant effect on each factor (all ps, .001, all
bs . .07) (Figure 2D). The cognitive factor showed a trend
toward a positive relationship with illness duration (p = .081,
b = .014) and a significant negative relationship with age (p =
.033, b = 2.015) (Figure 2D), although both covariates were
collinear (r = .65). In contrast, loadings on the negative factor
were higher for older individuals (p = .11, b = .016) and lower
for those with longer illness duration (p = .18, b = 2.015).
Gender differences were not observed in any factor. Bootstrap
(Figure 2E) and leave-one-site-out analyses corroborated the
aforementioned ANOVA findings (Supplement). Adding
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 5
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Figure 2. Inter-item correlations, relationship between factors, sociodemographic information, and clinical information. The 4-factor structure, derived from
the Pharmacotherapy Monitoring and Outcome Survey sample with initial measure of Positive and Negative Syndrome Scale (PANSS) scores, was adopted as
the reference on which the international sample was projected to derive the factor loadings. (A, B) Heat maps show interitem correlations for the original
PANSS subscales (A) and the current orthonormal projective non-negative matrix factorization (OPNMF) 4-factor representation of psychopathology after
controlling for symptom severity (total PANSS score) (B). Correlation strength is color-coded (light yellow to red: positive correlations; cyan to blue: negative
correlations). (C) Box plot shows the bootstrap results (repeated 10,000 times) for the Pearson correlations among the 4-factor loadings. Bootstrap samples
were drawn with replacement from the original international sample, and then the correlation analysis was done on them. The red line depicts the median, the
green diamond depicts the mean, and the whiskers represent the 5th and 95th percentiles. (D, E) Graphs show effects of sociodemographic and clinical
features on the 4-factor loadings. (D). Scatter plots show 4-way analysis of variance results of the significant negative association between age (adjusted for
gender, illness duration, and total PANSS score) and the cognitive loading (p = .033) as well as the significant positive associations between the symptom
severity (total PANSS score) and the 4-factor loadings (negative: p = 4.98 3 102105; positive: p = 2.52 3 10–51; affective: p = 1.75 3 102133; cognitive: p =
1.58 3 102106) after adjusting for age, gender, and illness duration. Regression lines are depicted with a 95% confidence interval on the fitted values.
(E) Bootstrap results for the 4-way analysis of variance are shown. Bootstrap samples were drawn with replacement from the original international sample and
then the analyses of variance were done on them. Boxes refer to the beta values. The red line depicts the median, the green diamond depicts the mean, and the
whiskers represent the 5th and 95th percentiles. *Median, p , .05; **Mean and median, p , .05.
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olanzapine-equivalent dosage to the 4-way ANOVA did not
reveal any significant association with medication.
Psychopathological Subtypes

Fuzzy c-means clustering on the adjusted loadings revealed
an optimal 2-cluster solution (Figure 3A, B and Supplemental
Figures S16 and S17). Although GMM demonstrated an
optimal 3-cluster solution, one of the clusters was diffusely
6 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
distributed in space containing patients from both c-means
clusters. This GMM cluster was excluded because it would not
represent any specific subtype (Figure 3C). Patients inside the
c-means GMM intersection had higher c-means membership
likelihoods (roughly . .70) to belong to their own cluster than
those outside the intersection (p , .01, Wilcoxon rank-sum
test) (Figure 3D). We chose the cluster cores using the likeli-
hoods of c-means with a cutoff of .70. As a result, 2 core
subtypes were defined after filtering out 50 ambiguous patients

http://www.sobp.org/journal


Figure 3. Fuzzy c-means clustering results of patient subgroups based on the loadings of the generalizable 4-factor structure. (A) The internal validity
indices used for determining the optimal cluster number are shown. Higher values of fuzzy silhouette index (in triangle) and lower values of Xie and Beni index
and partition entropy (in inverted triangle) indicate a better clustering quality. The maximum for fuzzy silhouette index and the minimums for Xie and Beni index
and partition entropy all suggested a 2-cluster solution. Fuzzy silhouette index and Xie and Beni index reflect the compactness and separation of the generated
clusters, while partition entropy reflects the fuzziness of the cluster partition, that is, the uncertainty of the patients to be assigned to a certain cluster. (B) Box
plot shows results of the assessment of clustering stability based on the subsampling technique. The cluster number 2 reaches the highest adjusted Rand
index. Adjusted Rand index reflects the convergent assignment of the patient pairs to the clusters between the subsamples and the original sample. (C) Four-
dimensional visualization of the optimal 3 Gaussian mixture modeling (GMM) clusters determined by the Bayesian information criterion is shown (a higher value
indicates a better clustering solution). Magnitude of the cognitive loading was color-coded differently for the 3 clusters (cluster 1 corresponds to the cluster I
[i.e., subtype A] in fuzzy c-means, yellow to Modena; cluster 2 corresponds to the cluster II [i.e., subtype B] in fuzzy c-means, blue to shallow flax; cluster 3 is
the excluded diffused cluster that would not present any specific subtype, black to light gray). (D) Box plot shows the fuzzy c-means membership likelihoods of
the patients inside and outside the intersection of the c-means and GMM clustering results. The black line indicates a heuristic cutoff of .70. (E) A
4-dimensional (4-D) visualization of the optimal fuzzy c-means 2-cluster solution is shown. Ambiguous assignments were defined by membership likelihoods,
.70, which was selected by interacting with GMM. Those subtype-ambiguous patients are shown in small dots, and X represents the centroid. Magnitude of the
cognitive loading is color-coded differently for the two clusters (cluster I, yellow to Modena; cluster II, blue to shallow flax). (F) Grouped box plots show the
between-subtype (without subtype-ambiguous patients) comparison results of the 4-factor loadings, age, illness duration, and total Positive and Negative
Syndrome Scale (PANSS) score. Cluster I is dominated by negative and affective symptoms (i.e., subtype A), and cluster II is significantly prominent in positive
symptom expressions (i.e., subtype B). The black dashed line depicts the median, the yellow diamond depicts the mean, and the whiskers represent the 5th
and 95th percentiles. *p , .01; **p , .001.
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from each of the 2 c-means clusters (Figure 3E). The first
subtype showed a psychopathological profile dominated by
negative and affective symptomatology (subtype A). The other
subtype featured prominent positive symptoms (subtype B; all
ps , .001 in permutation tests) (Figure 3F and Supplemental
Figure S18). Importantly, subtypes did not differ in gender
distribution, age, or illness duration (all ps . .05), but subtype
B showed higher symptom severity (p = .008). The same
B

2-cluster solution was replicated on the PHAMOUS patients
with complete demographic and clinical information (N = 1326;
56% of the 603 ambiguous patients in subtype B when hard-
clustered) and on those with repeatedly assessed PANSS
scores (n = 527; 45% ambiguous). Nearly 80% of the reas-
sessed patients retained their subtype, with subtype A being
more stable (85%) (Supplement). The additional clustering
analyses supported our 4-factor model with covariates
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 7
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adjustment for a clinically meaningful subtyping (Supplemental
Figures S19–S23).

Classifying Psychopathological Subtypes From
rsFC

The rsFC profile of the parcel located in the right ventromedial
prefrontal cortex yielded the highest out-of-sample classifica-
tion accuracy (70% of patients not used for training were
assigned to the correct psychopathological subtypes), fol-
lowed by parcels in the right temporoparietal junction, bilateral
precuneus, and posterior cingulate cortex (Figure 4C). Per-
mutation tests showed that the top 104 classifiable parcels
were significant (p , .05) against chance (i.e., randomized
subtype labels), and 53 parcels survived false discovery rate
correction (q , .05) (Figure 4B). Of note, parcels are labeled by
their microanatomical location with their functional implications
(Supplemental Table S4). Classification with additional global
mean signal removal or with an rsFC-based subcortical par-
cellation replacement (7 parcels [46] as a control analysis
instead of the finer Brainnetome subcortical parcellation)
replicated these results (see Supplement and Supplemental
Figure S26).

DISCUSSION

By factorizing the PANSS scores from a large sample using
OPNMF and cross-validating the results in a heterogeneous
multisite dataset, we revealed a robust, replicable, and
generalizable 4-factor structure comprising negative, positive,
affective, and cognitive dimensions across populations, set-
tings, and medical systems. Based on this 4-factor structure, 2
core psychopathological subtypes were obtained that showed
good longitudinal stability and could be discriminated by
regional rsFC patterns, with the right ventromedial prefrontal
cortex showing the highest (70%) classification accuracy.

Relationship to Previous Factor Models of PANSS

The 3 PANSS subscales do not reflect the latent structure of
this inventory well (5–7). In turn, our model represents a stable,
generalizable, and well-interpretable description of schizo-
phrenia psychopathology suited for representing the full range
of acute and chronic symptoms. Resonating with this view, a
pyramidical model proposed by the PANSS developers
comprised 4 components (6). Three of these (negative, posi-
tive, and affective dimensions) showed good agreement with
our model. The fourth component, however, isolated only
excitement, while cognitive disturbances were distributed
across all dimensions or discarded. Such a representation is
obviously at odds with the importance of cognitive dysfunction
and has prompted the proposal of more complex models
(7–11), for example, a recent 5-factor model reflecting nega-
tive, positive, depressed, excited, and cognitive dimensions
(45). However, replicability, external validity, and generalization
remain a concern for these models (47). As a striking example,
White et al. (13) found that none of 20 tested models fit their
data adequately, and they put forward a new pentagonal
model that later (together with 24 other models) also could not
be confirmed (14). In the same study (12), the authors devel-
oped an improved 5-factor model using 10-fold cross-
validation. However, it still failed to be confirmed, along with
8 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
31 other 5-factor models, in a later study involving 2 large
Chinese samples (15). In our sample, inadequate fit for EFA
models with 4 to 7 factors was also manifested, and the fifth
OPNMF factor, compared with the 4 factors, showed the
poorest out-of-sample loading predictions (Supplemental
Figure S10B). These facts, as a whole, point to a funda-
mental instability of 5-factor models (9–15,44). Addressing
these concerns, the current work not only was based on a
large sample for model identification but also, importantly,
focused strongly on cross-validated stability and out-of-
sample generalization. Critically, the external validation was
based on a heterogeneous international sample, and the
optimal model suggested a single factor to combine both the
cognitive and excited symptoms. This view is corroborated by
observations that cognitive and excited symptomatologies are
highly correlated (45) and share similar neurobiological sub-
strates (48,49).

Internal Consistency and Relationship Among
Variables

Although we identified the optimal representation by its
robustness and ability to generalize to new populations, the
positive and negative dimensions of our model also showed
better internal consistency than the PANSS subscales while
differentiating the broad general psychopathology. Moreover,
our affective and cognitive factors showed higher internal
consistency than those reported in previous factor models
(7,8,10,45). Finally, correlations between individual items within
OPNMF factors were higher and more homogeneous
compared with the PANSS subscales.

Matching previous reports (4,8,45), negative and positive
factors from our model were least related before, and showed
a strong anticorrelation after, controlling for symptom severity.
The inverse age versus illness duration effect on negative
symptoms implies that this effect may be more related to age
than to illness duration. This is intriguing from the perspective
of early aging or degeneration, but it needs to be viewed with
caution because age and illness duration are highly correlated.
Colinear variables in a single linear regression model make it
difficult to disentangle their respective effects on the negative
factor as well as on the cognitive factor (50).

Psychopathological Subtypes, Longitudinal
Stability, and Neurobiological Differentiability

Our results revealed 2 distinct schizophrenia subtypes
featuring predominantly positive and negative symptoms,
respectively. The subtypes were longitudinally stable and
could be classified from neuroimaging data. Such a positive–
negative dichotomy has been widely supported (51,52). Finer
distinctions have been proposed but show poor replicability
(18–20). The inconsistency of finer subtyping may relate to
idiosyncrasies in small samples from a single geographical
region and to the lack of explicit analyses of stability and
replicability. Moreover, longitudinal stability of our new sub-
types was higher than that reported for traditional clinical
subtypes or for a positive/negative/mixed topology (53–55).
Interestingly, we found subtype A to be particularly stable.
Previous studies indicated that both mixed and negative
symptom states increase over time, whereas psychotic

http://www.sobp.org/journal


Figure 4. Classifying psychopathological subtypes from resting-state functional connectivity. (A) The brain parcellation scheme (600 cortical parcels plus
36 subcortical parcels) and the resting-state functional connectivity matrix that was constructed based on this parcellation system are illustrated. In par-
celwise classification analysis, one column of the connectivity matrix was taken to represent the functional connectivity pattern for a single parcel. (B)
Cortical surface rendering and subcortical axial slices show parcelwise classification results for those parcels that survived false discovery rate (FDR)
correction (q , .05), demonstrating a neurobiological divergence between the two identified psychopathological subtypes of schizophrenia. (C) Cortical
surface rendering and subcortical axial slices show parcelwise classification results for the whole brain. The balanced classification accuracy is color-coded
from light gray to dark red.
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expressions usually diminish outside acute episodes and over
time (54,55). Future studies with a longer follow-up duration are
desired; the mean of 1.35 years’ follow-up assessed in the
current study is not a long period in schizophrenia. In addition,
the employed soft-clustering method better accommodates
B

ambiguous patients compared with previous hard-clustering
methods, and furthermore, patients with ambiguous member-
ships can be filtered out with appropriate cutoffs to improve
the ability of detecting neurobiological distinctions between
subtypes. Nonetheless, the cutoff value chosen in the current
iological Psychiatry - -, 2019; -:-–- www.sobp.org/journal 9
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study should be noted as heuristic. The cluster-ambiguous
patients might represent a transient group lying between the
two more differentiated subtypes.

The current top classifiable brain regions all are implicated
in schizophrenia pathophysiology and processes relevant to
the psychopathological distinction (22,56–60). Previous find-
ings in the literature relating fMRI parameters to differential
symptoms exclusively relied on group-level analyses, while our
approach bridged an important gap between neurobiological
divergence and distinct symptomatic patterns at the individual
level. To our knowledge, it is the first study to successfully
classify psychopathological subtypes in schizophrenia. Of
note, the current classification accuracy was similar to accu-
racy levels previously reported for classifications of patients
with schizophrenia versus healthy participants (61–63). The
demonstrated neurobiological differentiability corroborates the
currently identified schizophrenia subtypes expressed along
the 4 OPNMF dimensions.
Limitations and Considerations

We assessed factor structure, subtypes, and their neurobio-
logical differentiations with a particular emphasis on robust-
ness and generalization. This conservative approach seems
necessary given current concerns of nonreplicability in
biomedical research, but it might have contributed to the fact
that we corroborated the clinically well-established positive–
negative distinction rather than identifying more differentiated
subtypes. We note, however, that a recent imaging-based
clustering also provided evidence for 2 subtypes (64), and
we stress that the current analysis of a large heterogeneous
sample did not reveal any evidence for a more fine-grained
differentiation among the patients. Thus, it remains to be
seen whether an additional differentiation between these 2
core subtypes may be robustly revealed by analyzing sub-
stantially larger samples or whether previously proposed
additional subtypes represent distinctions that could be found
in a particular dataset but are not universally present. We also
acknowledge that patients were on their regular medication as
prescribed by the attending psychiatrists, and thus the current
results might be confounded by direct and indirect mediation
effects thereof. However, it stands to reason that a multisite
study, pooling patients from different psychiatrists with differ-
ential medication strategies, will render medication largely as a
source of random variation in our data. Such noise would
effectively make it harder to identify generalizable psycho-
pathological factors and robust subtypes and, in particular, to
train models that work well for out-of-sample classification of
subtype membership. Thus, we would argue that the current
results should not be driven by medication effects but rather
represent general structures of psychopathology and schizo-
phrenia subtypes. In addition, rsfMRI has its own limitations
such as variability across scanning sessions and the issue of
confounding factors (42,65,66). We focused on rsfMRI
because it could temporally better map the likewise state-
dependent psychopathology compared with structural MRI.

Using advanced machine learning with cross-sample vali-
dation, the current study suggested a stable and generalizable
4-factor model of PANSS. This representation allowed for the
definition of a reliable positive–negative subtype differentiation
10 Biological Psychiatry - -, 2019; -:-–- www.sobp.org/journal
that showed good longitudinal stability and a neurobiological
divergence in rsFC. Overall, the current work further disen-
tangled the heterogeneity of schizophrenia, possibly allowing
for the design of more specifically targeted treatments.
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