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Abstract

Hippocampal atrophy and abnormal β-Amyloid (Aβ) deposition are established markers

of Alzheimer's disease (AD). Nonetheless, longitudinal trajectory of Aβ-associated hip-

pocampal subfield atrophy prior to dementia remains unclear. We hypothesized that

elevated Aβ correlated with longitudinal subfield atrophy selectively in no cognitive

impairment (NCI), spreading to other subfields in mild cognitive impairment (MCI). We

analyzed data from two independent longitudinal cohorts of nondemented elderly,

including global PET-Aβ in AD-vulnerable cortical regions and longitudinal subfield vol-

umes quantified with a novel auto-segmentation method (FreeSurfer v.6.0). Moreover,

we investigated associations of Aβ-related progressive subfield atrophy with memory

decline. Across both datasets, we found a converging pattern that higher Aβ correlated

with faster CA1 volume decline in NCI. This pattern spread to other hippocampal sub-

fields in MCI group, correlating with memory decline. Our results for the first time sug-

gest a longitudinal focal-to-widespread trajectory of Aβ-associated hippocampal

subfield atrophy over disease progression in nondemented elderly.
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1 | INTRODUCTION

Hippocampal atrophy and abnormal β-Amyloid (Aβ) are characteristic

of Alzheimer's disease (AD; Barnes et al., 2009; Jack Jr. et al., 2013).

Evidence from animal models suggest that Aβ burden may affect hip-

pocampal neurodegeneration via synaptic or neuronal dysfunctions

(Busche et al., 2012; Busche & Konnerth, 2015; Masters, Cappai,

Barnham, & Villemagne, 2006; Perez-Cruz et al., 2011). Indeed, greater

PET-Aβ burden was associated with smaller volume cross-sectionally

(Chetelat et al., 2013; Hanseeuw, Dricot, Lhommel, Quenon, & Ivanoiu,

2016; Mormino et al., 2009) and faster volume decline longitudinally in

the whole hippocampus (Villemagne et al., 2013) in nondemented

elderly. Nevertheless, lack of association between PET-Aβ and whole

hippocampal atrophy was also found in cognitively normal elderly

(Becker et al., 2011). Given Aβ-associated hippocampal atrophy in

nondemented elderly but not in patients with AD-dementia (Chetelat

et al., 2010), it may be implied that Aβ affects hippocampal degenera-

tion more robustly in early disease stage while other pathologies con-

tribute more in dementia stage. This is in line with the AD Pathological

Cascade model (Jack Jr. et al., 2013) proposing that Aβ accumulation

precedes hippocampal atrophy and both reach a plateau at dementia

or earlier. Nonetheless, the longitudinal trajectory of Aβ-associated

hippocampal atrophy in predementia remains unclear.

Notably, the hippocampus consists of several subfields (Bakker,

Kirwan, Miller, & Stark, 2008; Small, Schobel, Buxton, Witter, &

Barnes, 2011). A review concluded selective subfield atrophy before

dementia, more consistently in the CA1/subiculum (de Flores, La

Joie, & Chetelat, 2015). Few studies tested Aβ-associated subfield

atrophy in nondemented elderly, showing smaller subiculum/hippo-

campal-tail/presubiculum in Aβ-positive no cognitive impairment

(NCI; vs. Aβ-negative NCI) (Hsu et al., 2015), and smaller

CA1/subiculum in Aβ-positive mild cognitive impairment (MCI) com-

pared with NCI (but no difference compared with Aβ-negative MCI)

(La Joie et al., 2013). These findings suggest selective hippocampal

subfield atrophy related to Aβ in predementia.

However, previous studies relied on manual segmentation (La Joie

et al., 2013) or earlier in-vivo atlas-based FreeSurfer approach (Hsu et al.,

2015), leading to hippocampal segmentation inaccuracy (Iglesias et al.,

2015; Wisse, Biessels, & Geerlings, 2014). Moreover, cross-sectional

design and dichotomized Aβ-status prevented them from testing longitu-

dinal trajectories of Aβ-associated subfield atrophy accurately.

Therefore, we aimed to investigate how Aβ influence hippocampal-

subfield atrophy in NCI/MCI longitudinally in two independent datasets,

applying a novel ex-vivo ultra-high-resolution atlas-based automatic

hippocampal segmentation (FreeSurfer v.6.0). We hypothesized Aβ-

associated longitudinal atrophy in selective subfields (e.g., CA1/

subiculum), spreading to other subfields over disease deterioration in

nondemented elderly. Furthermore, we tested whether Aβ-associated

progressive subfield atrophy correlated with memory decline.

2 | METHODS

2.1 | Participants

This study recruited participants from two independent datasets:

(a) 75 NCI and 104 MCI who were new patients from the Alzheimer's

Disease Neuroimaging Initiative (ADNI2) study as defined on July

10, 2018 and (b) 20 NCI and 93 MCI from Memory Aging and Cogni-

tion Centre (MACC) dataset recruited from memory clinics/commu-

nity in Singapore (Chong et al., 2017). ADNI data were obtained from

the ADNI database (http://adni.loni.usc.edu/). ADNI is a public-private

partnership (PI: Dr. Michael W. Weiner), testing whether MRI, PET,

clinical/neuropsychological assessment, and other biological markers

can be combined to measure the progression of MCI and early AD.

For the MACC dataset, weekly consensus meetings were organized

between neurologists, psychologists, and research personnel to make

diagnosis based on clinical observations, CT and/or MRI scans, and labo-

ratory tests. Diagnosis of MCI was made if patients had subjective cogni-

tive complaint and objective impairment in at least one domain on the

locally validated neuropsychological assessment battery (see Section 2.2),

but remained functionally independent and not demented. For MACC

participants, exclusion criteria included: (a) comorbidity with neuropsy-

chiatric disorders (e.g., bipolar disorder) or epilepsy associated with cogni-

tive impairment; (b) disorders that may influence the central nervous

system (e.g., current or past substance abuse disorder, nutritional, toxic,

or traumatic disorder) in accordance with the Diagnostic and Statistical

Manual of Mental Disorders (DSM-IV); (c) central nervous system infec-

tions, such as bacterium, Creutzfield–Jacob disease, viral encephalitis,

fungi, syphilis, tuberculosis, or rickettsiae); (d) hypo-/hyper-tensive, hyp-

oxic/anoxic, uremic, or hepatic encephalopathy; (e) intracerebral hemor-

rhage possibly leading to impaired cognition; (f) space occupying

intracranial lesion (e.g., tumor); (g) inflammatory vasculitides, cranial arter-

itis, or moyamoya disease in the central nervous system; (h) normal or

obstructive pressure hydrocephalus; (i) cortical infarct leading to surface

model reconstruction errors. Moreover, the following exclusion criteria

were applied for both datasets, including (a) MRI-incompatibilities

(e.g., mental implants, pregnancy); (b) surface model reconstruction errors

for structural images (see MRI preprocessing); (c) NCI participants with a

score of <26 on the Mini-Mental State Examination (MMSE).

After image quality control (see Section 2.4), 52 NCI and 77 MCI

from the ADNI were included in the final cross-sectional and
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longitudinal analyses with annual follow-ups up to 4-years (Table 1).

For the MACC dataset, 15 NCI and 76 MCI were included in the

cross-sectional analyses. A subset of 12 NCI and 45 MCI who had

two MRI scans were selected for the longitudinal analyses (Table 1;

see Section 2.3 for MACC selection note). There was no difference in

follow-up time between NCI and MCI for both datasets, although the

follow-up time was in general shorter in the MACC dataset compared

with the ADNI dataset (Table 1).

This study was conducted in line with the Helsinki Declaration,

and the MACC study was approved by the National Healthcare Group

Domain-Specific Review Board and SingHealth Institutional Review

Board. All participants have provided written consent.

2.2 | Neuropsychological assessments

In both datasets, the MMSE and Clinical Dementia Rating (CDR) were

performed. Regarding the MACC dataset, a locally validated neuro-

psychological assessment battery was administered to all participants,

including two memory domains (verbal and visual memory), and five

nonmemory domains (language, attention, executive function,

visuoconstruction, and visuomotor speed) following our previous

work (Ji et al., 2017; Vipin et al., 2018). Standardized z-score for each

domain was calculated following previous publication (Xu et al., 2015).

A memory z-score was calculated by averaging the z-scores between

the two memory domains for MACC. For ADNI, we used the ADNI

memory z-score as validated by previous work (Crane et al., 2012).

2.3 | Image acquisition

For both datasets, whole-brain T1-weighted structural MRI images

were collected using the Magnetization prepared rapid gradient recal-

led echo (MPRAGE) sequence. ADNI participants were scanned in a 3T

scanner (SIEMENS Magnetom Tim Trio, Skyra and Verio scanner, or

PHILIPS Magnetom Achieva, Intera, and Ingenia scanner depending on

the scanning site) at baseline and annual follow-up (176 sagittal slices,

voxel size = 1 × 1 × 1.2 mm3, TR/TE/TI = 2300/2.98/900 ms,

FOV = 240 × 256 mm2, flip angle = 9�). MACC participants were

scanned in a 3T Siemens Magnetom Tim Trio scanner (32-channel head

coil) at baseline and Year 2 (192 sagittal slices, voxel size =

1 × 1 × 1 mm3, TR/TE/TI = 2300/1.9/900 ms, FOV = 256 × 256 mm2,

flip angle = 9�). The MACC MRI scanning protocol also included a Fluid

attenuation inversion recover (FLAIR) image (48 axial slices, voxel

TABLE 1 Demographic and neuropsychological features of participants included in the cross-sectional analysis of the ADNI dataset and
MACC dataset

ADNI dataset MACC dataset

NCI MCI NCI MCI
(n = 52) (n = 77) t/χ2 p (n = 15) (n = 76) t/χ2 p

Age, M(SD)f 73.7 (6.7) 68.6 (6.5) 4.40 <.001* 73.2 (7.4) 76.0 (5.9) 1.59 .12

Male/female 24/28 35/42 0.006 .94 8/7 37/39 0.11 .74

Handedness, R/Lf 46/6 68/9 0.001 .98 15/0 74/2 0.40 .53

Ethnicity, H,L/non-H,L or C/non-C 2/50 0/77 3.01 .08 15/0 65/11 2.47 .12

Education, M (SD)e,f 16.9 (2.4) 16.5 (2.6) 0.85 .40 8.0 (4.8) 8.6 (4.7) 0.41 .68

CDR-SOB, M (SD)a,f 0.02 (0.1) 1.3 (0.9) 12.16 <.001* 0.0 (0.0) 0.8 (0.9) 7.39 <.001*

MMSE, M (SD)a, f 29.3 (1.1) 28.3 (1.6) 4.37 <.001* 28.6 (1.2) 24.4 (3.6) 7.17 .001*

Aβ burden, M (SD)b 0.11 (0.4) 0.24 (0.4) 1.61 .11 0.12 (0.3) 0.40 (0.5) 2.88 .007*

Aβ burden, rangeb −0.4~1.1 −0.4~1.1 - - −0.2~0.9 −0.2~1.6 - -

WMH burden, M (SD)b 0.94 (1.3) 0.81 (1.1) 0.61 .55 1.6 (2.3) 1.8 (1.8) 0.34 .73

Dementia convertor, no. (%) 0 (0) 17 (22.1) - - 0 (0) 3 (4.0) - -

Remitter, no.c (%) 0 (0) 0 (0) - - 0 (0) 1 (1.3) - -

Follow-up months, M (SD)d 48.4 (6.9) 46.3 (8.2) 1.58 .118 23.3 (1.8) 23.7 (2.0) 0.59 .556

Note: All NCI included in the present study had a MMSE score of ≥26. Groups were compared within each dataset or between datasets on the listed

variables, using independent-samples T test or chi-square tests where appropriate, with a threshold of p < .05 (*, two-tailed). We did not compare Aβ,
WMH, and ethnicity between datasets due to difference in radiotracer, WMH quantification method and recruited population, respectively.

Abbreviations: C/non-C, Chinese/non-Chinese; CDR-SOB, Clinical Dementia Rating Sum of Boxes score; H,L/non-H,L, Hispanic or Latino/non-Hispanic or

Latino; L, left; M, mean; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; N, number; NCI, no cognitive impairment; R, right; SD,

standard deviation; WMH, white matter hyperintensity.
aSix NCI did not have MMSE and CDR-SOB scores, and CDR-SOB score was not available for two MCI from the MACC dataset.
bAβ and WMH represented log-transformed SUVR score with PVC and log-transformed WMH volume respectively.
cThis participant remitted from dementia (baseline) to NCI (Year 2), and then deteriorated to MCI during subsequent PET scanning, based on which we

included this participant in cross-sectional analyses but excluded from the longitudinal investigation.
dFor MACC dataset, a subset of 12 NCI and 45 MCI were included in the longitudinal analyses.
eWe compared the same group between datasets, with significance being indicated for NCI.
fWe compared the same group between datasets, with significance being indicated for MCI.
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size = 1 × 1 × 3 mm3, TR/TE/TI = 9000/82/2500 ms, flip angle = 180�,

FOV = 232 × 256 mm2).

The PET emission protocols were as follows: (a) ADNI dataset:

370 MBq 18F-AV-45 injection was followed by dynamic imaging (four

5-min frames) from 50 to 70 min postinjection, and PET scan was per-

formed within 28 days from the baseline MRI scan. Other scanning

parameters depended on the scanner used at different sites, as

described on the ADNI website (ADNI, 2011); (b) MACC dataset: PET

scanning was performed on a Siemens Biograph mMR scanner (Delso

et al., 2011) at the Clinical Imaging Research Centre (National Univer-

sity of Singapore, Singapore), 370 MBq 11C-PIB injection was

followed by static data acquisition from 40 to 70 min post injection

(176 axial slices, voxel size = 1 × 1 × 3 mm3, FOV = 256 × 256 mm2).

For MACC dataset, PET data were acquired per participant once dur-

ing the whole longitudinal project. Therefore, we selected the MRI

scan closest in time to the PET scan for the cross-sectional analysis

(not necessarily baseline MRI scan, mean ± SD: 3.1 ± 7.3 months).

Given the slow Aβ accumulation (Villemagne et al., 2013) and for the

purpose of increasing sample size for longitudinal analyses, baseline

and Year 2 MRI scans were included in the MACC longitudinal ana-

lyses irrespective of PET scan time (baseline MRI-PET interval [mean

± SD]: 33.1 ± 14.7 months).

2.4 | Data preprocessing

2.4.1 | MRI preprocessing

Structural images were first checked for motion via visual inspection,

and then preprocessed using the FreeSurfer pipeline (v.6.0) (Fischl

et al., 2002; Fischl et al., 2004; Reuter, Schmansky, Rosas, & Fischl,

2012). The longitudinal data were further preprocessed with the stan-

dard longitudinal FreeSurfer pipeline, creating an unbiased subject-

specific template for re-processing structural image at each time

point. This longitudinal pipeline has shown to reduce within-subject

variability and improve sensitivity to detect subtle changes (Reuter,

Rosas, & Fischl, 2010). Manual editing on structural images was

applied where appropriate blinded to diagnoses. Participants with sur-

face reconstruction errors that cannot be addressed by manual editing

were excluded.

2.4.2 | PET preprocessing

We downloaded from the ADNI website the mean aligned PET images

(native space) for further preprocessing (http://adni.loni.usc.edu/

methods/pet-analysis-method/pet-analysis/ n.d.). Briefly, the four

5-min frame images were aligned to the first one and then averaged

across the emission frames using the Statistical Parametric Mapping

(SPM5). The MRI FreeSurfer parcellations (MRI preprocessing) were

used to define the regions of interest (ROI) for subsequent calculation

of standardized uptake value ratio (SUVR) from PetSurfer (Greve et al.,

2016). Specifically, a high-resolution segmentation was created based

on the preprocessed structural image per participant, followed by

coregistering the mean aligned PET image to the high-resolution

T1-MPRAGE segmentation. Afterward, partial volume correction (PVC)

was applied using the symmetric geometric transfer matrix, and SUVR

scores were derived for each ROI from the FreeSurfer-defined

parcellation (cerebellar gray matter as the reference region). Finally, a

global SUVR score was calculated by extracting means from four main

cortical regions (i.e., frontal, cingulate cortex, lateral temporal, and lat-

eral parietal) as used in previous literature (Landau & Jagust, 2015). A

global SUVR score without applying PVC was also obtained.

For MACC PET data, motion correction was performed prior to

tomographic reconstruction into a single static frame, using an in-house

developed rebinner with rigid motion correction, binning into 20s frames

(Reilhac et al., 2018). Motion corrected images were reconstructed into a

volume of 344 × 344 × 344 voxels (voxel size = 2.09 × 2.09 × 2.03 mm3)

using 3D Ordinary Poisson Ordered-subsets Expectation Maximization

algorithm (Panin, Kehren, Michel, & Casey, 2006) with all corrections per-

formed (including resolution modeling) and using three iterations and

21 subsets. Subsequently, same PetSurfer based preprocessing steps

were applied as used for the ADNI dataset to obtain the global SUVR

score, both with and without PVC. We used the global SUVR score for

subsequent statistical analyses.

2.5 | Hippocampal subfield segmentation

Based on the preprocessed structural-images, a subject-specific atlas

based longitudinal pipeline of automated hippocampal subfield segmenta-

tion (FreeSurfer v.6.0) was used to generate more sensitive subfield vol-

ume (Iglesias et al., 2016). Since not all MACC baseline structural-images

were used for longitudinal investigation (see Section 2.3), cross-sectional

pipeline of hippocampal subfield segmentation (FreeSurfer v.6.0) (Iglesias

et al., 2015) was applied for the MACC cross-sectional analysis, which

was similar to the longitudinal pipeline without creating a subject-specific

template. Importantly, both algorithms were based on a probabilistic atlas

acquired from ultra-high resolution (~0.1 mm) ex vivo MRI data, showing

significantly improved segmentation accuracy compared with previous

method based on in vivo atlas from the earlier FreeSurfer v.5.3, and bet-

ter alignment with previous histological studies (Iglesias et al., 2015;

Iglesias et al., 2016). Twelve subfields were obtained (Figure 1), and we

focused on the seven gray-matter subfields following previous studies

(Ho et al., 2017), including the granule cell layer of dentate gyrus (GCL),

CA1, CA2/3, CA4, molecular layer (ML), hippocampal tail, and subiculum.

Bilateral volume was averaged per subfield for subsequent analyses.

2.6 | Statistical analyses

2.6.1 | Longitudinal analyses

Linear mixed model (LMM) analyses (R software, v.3.5.1) were con-

ducted to test global Aβ-associated progressive hippocampal atrophy

in NCI and MCI separately (Model 1). To provide a reference for any
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observed Aβ-associated effects, we also explored the time effects

only on hippocampal subfield atrophy in groups separately (Model 2).

Volumeij = β0+ β1*Aβi + β2*Timeij + β3*Aβi*Timeij
+ β4*Agei + β5*TIVi + b0i + b1iTimeij + ɛij Model1ð Þ

Volumeij = β0+ β1*Timeij + β2*Agei + β3*TIVi + b0i + b1iTimeij + ɛij Model2ð Þ

where Volumeij represented volume of individual subfield or whole hip-

pocampus at time j for participant i, Aβ was indexed with the log-

transformed SUVR score, and time was the interval from baseline MRI

for each time point (in month, baseline = 0). Baseline age and total intra-

cranial volume (TIV) were added as covariates. β represented estimates

for the fixed effects (i.e., Aβ, Time, Age, TIV, and the interaction), and

individual intercept and slope of time were modeled as subject specific

random effects such that participants could have different baseline

measures and longitudinal changes (estimates denoted by b).

The MACC dataset included participants with varying cerebrovas-

cular disease markers (e.g., cortical infarct, lacune, white matter

hyperintensity [WMH], and microbleed) while ADNI dataset excluded

those with significant neurologic conditions (e.g., multiple infarcts,

lacunes) and had low level of WMH (Weiner et al., 2017). As such,

ADNI MCI possibly had a more pure AD pathology than MACC MCI

who more suffered from mixed pathology, potentially leading to dif-

ferent extents of atrophy progression. To test this possibility, we

derived a subsample of MCI patients that were close in the WMH vol-

ume between the two datasets and repeated the analyses (Supporting

Information). We did not match WMH on NCI, due to limited MACC

NCI sample.

Moreover, we performed validation analyses by further control-

ling for age and sex, PET-MRI interval, excluding dementia convertors

(ADNI: 17 MCI converted to AD; MACC: three MCI converted to AD)

and repeating analyses using global SUVR without PVC. To facilitate

results comparison between the two datasets, we also repeated the

analysis for the ADNI dataset with the first 2-year follow-up data.

For all analyses, age and TIV were included as covariates, and sta-

tistical threshold was set at p ≤ .05. We applied Holm–Bonferroni

multiple comparison correction for the number of subfields (n = 7).

2.6.2 | Cross-sectional analyses

To provide more complete information, we also built separate cross-

sectional general linear regression models for each subfield and whole

hippocampus in NCI and MCI groups, with global Aβ (log-transformed

SUVR) as the predictor and hippocampal volume of interest as the

dependent variable.

Due to the MACC MRI scan selection (see Section 2.3), we

repeated the cross-sectional analyses in NCI and MCI separately using

the baseline MRI scan. Additionally, as a sanity check, we compared

hippocampal subfield volume between NCI and MCI groups cross-

sectionally.

2.6.3 | Associations between progressive
hippocampal subfield atrophy and memory decline

We first built LMMs to examine whether there was memory decline

over time (Model 3). For subfields showing global Aβ-associated

F IGURE 1 Exemplar illustration
of hippocampal subfield segmentation
based on FreeSurfer (v.6.0) in a
representative NCI. One
representative NCI was selected from
(a) ADNI dataset and (b) MACC
dataset each. The planes of sagittal
(left), axial (middle), and coronal (right)
are shown. Abbreviations: NCI, no

cognitive impairment
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progressive atrophy, we investigated whether their longitudinal atro-

phy related to memory decline, using separate LMMs (Model 4). Ana-

lyses were performed in NCI and MCI separately. We controlled for

age and TIV. Threshold was set at p ≤ .05, and we applied Holm–

Bonferroni multiple comparison correction for the number of subfields

showing longitudinal associations with Aβ.

Memoryij = β0+ β1*Timeij + β2Agei + β3*TIVi + b0i + b1iTimeij + ɛij Model3ð Þ

Memoryij = β0+ β1*volumeij + β2*Timeij + β3*Volumeij*Timeij
+ β4Agei + β5*TIVi + b0i + b1iTimeij + ɛij Model4ð Þ

where Memoryij was the memory z-score at time j for participant i,

and volumeij represented individual subfield volume of interest. Deno-

tations were the same for other parameters as stated for model 1,2.

3 | RESULTS

3.1 | Longitudinal trajectories of Aβ-associated
hippocampal subfield atrophy in NCI and MCI

There were significant Aβ and time interaction in ADNI-participants

(NCI: β = −1.38, p = .02; MCI: β = −4.09, p < .001) and MACC MCI

group (β = −2.88, p = .05), but not in MACC NCI group (p = .13).

Regarding subfields, compared with the focal Aβ-related longitu-

dinal volume decline in NCI, MCI exhibited more general involvement

of subfields over time. Specifically, in ADNI MCI, Aβ-related

progressive atrophy widely spread to all the subfields (ps ≤.05 after

multiple comparison correction) (Figure 2, Table Se-2). For MACC

MCI, we found longitudinal atrophy in the CA1 (β = −.50, p = .014),

ML (β = −.53, p = .027), and the subiculum (trend-wise, β = −.38,

p = .051; Figure 2, Table Se-2). Additionally, WMH matched MCI sub-

samples showed similar patterns for both datasets, with the MACC

MCI subsample showing more robust Aβ-associated progressive atro-

phy in the same subfields compared with the whole MACC MCI sam-

ple, surviving multiple comparison correction (Table Se-3).

Regarding cognitively normal individuals, we found progressive

volume decline in the CA1 (β = −.21, p = .028), CA4 (β = −.14,

p = .024), HIP tail (β = −.34, p = .027), ML (β = −.25, p = .018), and

GCL (β = −.16, p = .023) that were modulated by Aβ in ADNI NCI

group (Figure 3, Table Se-4). In MACC NCI, we replicated the findings

of Aβ-associated CA1 volume decline (β = −.55, p = .046; Figure 3,

Table Se-4). None survived multiple comparison correction.

As a sanity check, we tested the time effects on hippocampal sub-

field atrophy. Unsurprisingly, all subfields showed longitudinal atrophy

irrespective of Aβ burden in NCI and MCI for both ADNI and MACC

datasets (ps ≤.05 after multiple comparison correction, Table Se-5,6).

Controlling for age and gender, PET-MRI interval, and repeating

analyses after excluding dementia convertors and using global SUVR

without PVC demonstrated largely similar results (Table Se-7,8). Due

to the follow-up time difference between ADNI and MACC, explor-

atory analyses with the first 2-year follow-up data in the ADNI

dataset revealed comparable results (Table Se-9).

Furthermore, the associations of Aβ with hippocampal subfield

atrophy cross-sectionally were rather weak, which did not survive

F IGURE 2 Widespread progressive

hippocampal subfield atrophy over time
with greater Aβ burden in MCI across
datasets. In ADNI dataset, higher level of
Aβ correlated to faster decline in volume
in all the seven hippocampal subfields,
surviving Holm–Bonferroni multiple
comparison correction. Similar patterns
were observed in the CA1, ML, and
subiculum (trend-wise, p = .051) for the
MACC dataset. Data were divided into
three approximately equal-sized groups
in terms of the log-transformed SUVR
scores, represented by the solid line
(upper tercile), dark gray dotted line
(middle tercile), and the light gray dotted
line (lower tercile). Hippocampal
subfields in orange represented
overlapping patterns (a), while those in
blue represented distinct patterns
between the two datasets (b).
Abbreviations: GCL, Granule cell layer of
the dentate gyrus; HIP tail, hippocampal
tail; MCI, mild cognitive impairment; ML,
molecular layer
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multiple comparison correction (Figure Se-1, 2). Also, as expected,

MCI showed smaller subfield volume in all subfields than NCI cross-

sectionally for both datasets (Table Se-10).

3.2 | Progressive hippocampal subfield atrophy
correlated with memory decline in MCI

We found significant memory decline in MACC-participants (NCI:

β = −.05, p = .002; MCI: β = −.03, p = .003), but not in ADNI-

participants (ps > .05). However, Aβ-associated longitudinal subfield

atrophy was related to memory deterioration in MCI for both MACC

(Figure 4; ps ≤.05 for the CA1 and ML after multiple comparison cor-

rection) and ADNI (ps ≤.05 after multiple comparison correction;

Table Se-11), which was absent in NCI (ps > .05).

Correlation between global Aβ and memory decline in MCI was

nonsignificant for both datasets (ps > .1). Exploratory analyses showed

region-specific associations between Aβ in regions with early deposi-

tion (i.e., posterior cingulate cortex [PCC], precuneus, and medial

orbital frontal gyrus; Palmqvist et al., 2017) and memory decline over

time in MCI group of both datasets (Table Se-12). Such effects were

also found between Aβ in the precuneus and medial orbital frontal

gyrus and memory decline in ADNI NCI group, but not in MACC NCI

group due to the small sample size (Table Se-13).

4 | DISCUSSION

This study is the first demonstration of a longitudinal focal-to-

widespread trajectory of hippocampal subfield atrophy in association

with Aβ over disease progression in nondemented elderly, replicated

in two independent datasets. Compared with the subtle CA1 volume

decline in NCI, MCI patients demonstrated more widespread subfield

atrophy over time. Moreover, Aβ-associated subfield atrophy rate was

related to the rate of memory decline over time in MCI group. Our

findings added novel knowledge on the association between Aβ and

neurodegeneration, and possible mechanisms of how Aβ contributes

to memory deterioration along disease progression prior to dementia.

F IGURE 3 Faster volume decline in the CA1 with greater Aβ
burden in NCI across datasets. Similar between the ADNI dataset and
MACC dataset (denoted by orange color), higher level of Aβ was
associated with faster atrophy in the CA1 (a). Differently (denoted by
blue color), NCI participants in the ADNI dataset also presented faster
atrophy in the CA4, HIP tail, ML, and GCL (b). Data were divided into
three approximately equal-sized groups in terms of the log-
transformed SUVR scores, represented by the solid line (upper tercile),
dark gray dotted line (middle tercile), and the light gray dotted line
(lower tercile). Hippocampal subfields in orange represented
overlapping patterns, while those in blue represented distinct patterns
between the two datasets. None survived Holm–Bonferroni multiple
comparison correction. Abbreviations: GCL, granule cell layer of the
dentate gyrus; HIP tail, hippocampal tail; ML, molecular layer; NCI, no

cognitive impairment

F IGURE 4 Progressive hippocampal subfield atrophy was
associated with faster memory decline over time in MACC MCI. For
hippocampal subfields that showed progressive atrophy in association
with Aβ, faster decline in volume in these subfields correlated to
faster memory decline in MCI for the MACC dataset, as well as ADNI
dataset (described in text, and not shown in figure). All survived
Holm–Bonferroni multiple comparison correction, except a trend-wise
effect in the subiculum (p = .07). Data were divided into three
approximately equal-sized groups in terms of the hippocampal
subfields volume, represented by the light gray solid line (upper
tercile), dotted line (middle tercile), and the black solid line (lower
tercile). Abbreviations: MCI, mild cognitive impairment; ML, molecular
layer
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4.1 | Focal-to-widespread progressive
hippocampal subfield atrophy over time with greater
Aβ burden in nondemented elderly

Importantly, both datasets consistently showed Aβ-associated longitu-

dinal atrophy progression in the CA1, ML, and subiculum. The CA1

and subiculum are key regions of the hippocampal circuit, being asso-

ciated with input integration and memory retrieval, respectively (Small

et al., 2011). Also, smaller ML has been correlated with poorer perfor-

mance in memory retrieval (Zheng et al., 2018). Altogether, it may be

implied that progressive atrophy in the CA1, ML, and subiculum

relates to impaired memory functioning. That volume decline in these

subfields correlated with memory decline in MCI lent further support.

Moreover, more widespread Aβ-associated atrophy progression

in ADNI MCI (versus MACC MCI) was not due to its longer follow-up

(Table Se-9, ADNI 2-year longitudinal results), while it might be partly

explained by cerebrovascular burden. Evidence has shown longitudi-

nal hippocampal atrophy in association with baseline WMH before

dementia (den Heijer et al., 2012), which has been suggested to be

Aβ-independent (Vemuri et al., 2015). Indeed, MACC MCI subsample

after excluding those with more severe WMH showed Aβ-associated

volume decline in the same subfields, but to a stronger extent. Future

studies need to investigate the relationship between Aβ, individual

cerebrovascular markers, and hippocampal subfield atrophy. In con-

trast to the observed widespread volume decline in MCI, NCI showed

subtle volume decline in the CA1 selectively across both datasets.

Interestingly, CA1 atrophy has also been observed in other disorders

(e.g., bipolar disorder (Bearden et al., 2008), and schizophrenia

(Ho et al., 2017)), suggesting a general CA1 vulnerability.

Taken together, we propose that Aβ-associated subfield atrophy

progression takes the form of a focal-to-widespread pattern as dis-

ease progresses from NCI to MCI. The AD Pathological Cascade

model (Jack Jr. et al., 2013) and Amyloid/Tau/Neurodegeneration AD

biomarkers system (Jack Jr. et al., 2016) have highlighted the role of

individual AD biomarkers. Our results underscore the importance of

associations between individual biomarkers, potentially leading to a

better understanding of the underlying disease mechanism.

4.2 | Possible underlying mechanisms of Aβ
modulation on the hippocampal subfield atrophy

Although the underlying neurotoxic mechanism of Aβ remains contro-

versial, it has been suggested that Aβ induces synaptic loss and

impairs neuronal function, resulting in neurodegeneration (Masters

et al., 2006). Our study replicated previous findings of neocortex Aβ-

hippocampal atrophy association in nondemented elderly (Chetelat

et al., 2010; Mormino et al., 2009). This could not be contributed to

hippocampal Aβ deposition (Chetelat et al., 2010), which is none or

low in early stage (Thal, Rub, Orantes, & Braak, 2002). Several possi-

bilities may be proposed. Specifically, key cortical regions for earliest

Aβ deposition (e.g., PCC/precuneus, orbital frontal; Palmqvist et al.,

2017) could connect to hippocampus via white matter tracts

(e.g., from the orbital frontal via uncinate fasciculus, and from

the PCC/retrosplenial via cingulum; Greicius, Supekar, Menon, &

Dougherty, 2009; Vipin et al., 2019). This implies a structural pathway

where abnormal Aβ may modulate. Indeed, Aβ has been associated

with longitudinal impairment of white matter integrity before demen-

tia (Vipin et al., 2019). Also, reduced precuneus–hippocampus func-

tional connectivity has been found in nondemented participants with

positive Aβ compared with those with negative Aβ (Sheline et al.,

2010), providing a potential functional pathway. Notably, we showed

that regional Aβ burden in these regions was associated with memory

decline especially in MCI patients (Table Se-12). We did not find

global Aβ-memory decline association, which was in line with previous

animal/human literature (i.e., association between global Aβ and cog-

nition was generally absent or weak if any; Chetelat et al., 2012;

Foley, Ammar, Lee, & Mitchell, 2015). Our findings may indicate a

possible region-specific influence of Aβ on longitudinal memory

decline. Nonetheless, future work is needed to study the spatiotem-

poral relationship between regional Aβ, hippocampal subfield degen-

eration, and memory decline in longer follow-up period. Another

possibility links to soluble Aβ that precedes Aβ plaques formation, and

has been suggested to affect hippocampal neurodegeneration via dis-

turbing synaptic processing based on transgenic mice model of AD

(Perez-Cruz et al., 2011). Soluble Aβ has also been shown to induce

hippocampal neuronal hyperactivity at early disease stage in trans-

genic AD mice, which has been hypothesized to be associated with

neuronal dysfunction and cell death at a later stage (Busche et al.,

2012; Busche & Konnerth, 2015).

Furthermore, given the association between tau deposition and

atrophy in the whole hippocampus or hippocampal subfields

(Apostolova et al., 2015), hippocampal subfield atrophy might be con-

tributed by hippocampal tau deposition, which coincides with neocor-

tex Aβ accumulation in early stage (Braak, Alafuzoff, Arzberger,

Kretzschmar, & Del Tredici, 2006). Supporting preliminary evidence

from ADNI MCI group suggested that Aβ-associated progressive hip-

pocampal subfield atrophy was more pronounced in MCI with p-tau

positivity, but not in MCI with p-tau negativity (Table Se-14). Further

systematic investigation into the interactions between region-specific

tau and Aβ deposition and their impact on neurodegeration over time

is needed using tau-PET method (Hall et al., 2017).

Regarding the selective CA1 volume decline in NCI, the CA1 has

more than 21 types of inhibitory interneurons (Klausberger & Somogyi,

2008), and CA1 interneurons reduction has been found in transgenic AD

mice (Takahashi et al., 2010). This might lead to an excitation-inhibition

imbalance in the CA1, being associated with synaptic dysfunction and

neuronal loss. The largest number of neurons (West & Gundersen, 1990)

and capillaries (Lokkegaard, Nyengaard, & West, 2001) as estimated in

the CA1 (vs. other subfields) might also contribute. Altogether, we pro-

pose that the CA1 atrophy represents a general and early vulnerability to

AD and the atrophy spreads to other subfields over time via possible

mechanisms as mentioned above. Although we could not pinpoint the

exact neocortex Aβ-hippocampal atrophy pathway(s), our result replica-

tions in two datasets provide convincing evidence for the focal-to-

widespread pattern of Aβ-associated subfield atrophy over time.
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4.3 | Limitations and future directions

There were some limitations. Firstly, MACC-dataset had fewer NCI

(n = 15) than ADNI-dataset (n = 52). However, similar results were

observed between datasets. Secondly, other variables may also con-

tribute to hippocampal subfield atrophy and disease progression

(e.g., tau pathology and cerebrovascular factors) in addition to Aβ

(Apostolova et al., 2015; den Heijer et al., 2012). Future studies need

to take into consideration the spatial quantification of Aβ instead of

an average Aβ burden, and determine the contributing variables and

the temporal relationships underlying disease progression. Finally, it

would be interesting to test how Aβ affects the hippocampus along

the anterior–posterior axis in predementia stages.

5 | CONCLUSION

To conclude, converging results from two independent datasets

showed that greater Aβ burden correlated with selective CA1 volume

decline in NCI and longitudinal atrophy extension into other subfields

in MCI, resulting in a focal-to-widespread longitudinal trajectory.

Moreover, the Aβ-associated progressive subfield atrophy correlated

with memory decline in MCI, hence, potentially serving as imaging

markers for disease progression monitoring.
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