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Distinct BOLD variability changes
in the default mode and salience
networks in Alzheimer’s disease
spectrum and associations with
cognitive decline
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Optimal levels of intrinsic Blood-Oxygenation-Level-Dependent (BOLD) signal variability (variability
hereafter) are important for normative brain functioning. However, it remains largely unknown

how network-specific and frequency-specific variability changes along the Alzheimer’s disease (AD)
spectrum and relates to cognitive decline. We hypothesized that cognitive impairment was related

to distinct BOLD variability alterations in two brain networks with reciprocal relationship, i.e., the
AD-specific default mode network (DMN) and the salience network (SN). We examined variability of
resting-state fMRI data at two characteristic slow frequency-bands of slow4 (0.027-0.073 Hz) and

slow5 (0.01-0.027 Hz) in 96 AD, 98 amnestic mild cognitive impairment (aMCl), and 48 age-matched
healthy controls (HC) using two commonly used pre-processing pipelines. Cognition was measured with
a neuropsychological assessment battery. Using both global signal regression (GSR) and independent
component analysis (ICA), results generally showed a reciprocal DMN-SN variability balance in aMClI (vs.
AD and/or HC), although there were distinct frequency-specific variability patterns in association with
different pre-processing approaches. Importantly, lower slow4 posterior-DMN variability correlated
with poorer baseline cognition/smaller hippocampus and predicted faster cognitive decline in all
patients using both GSR and ICA. Altogether, our findings suggest that reciprocal DMN-SN variability
balance in aMCl might represent an early signature in neurodegeneration and cognitive decline along
the AD spectrum.

Alzheimer’s disease (AD) is the major cause of dementia, and increasing attention has been focused on early
disease detection/prevention. Therefore, studying brain changes along the AD disease continuum is impor-
tant, i.e., from normal aging to the prodromal stage (amnestic mild cognitive impairment, aMCI) and finally to
dementia stage. Using resting-state functional connectivity methods' = that quantifies the temporal synchrony
between brain regions, both AD and aMCI have been found to target large-scale networks, including reduced
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default mode network (DMN) connectivity and increased salience network (SN)°- connectivity, as well as aber-
rant connectivity between networks® in AD, and disturbed connectivity in aMCI, especially in relation to the
DMN'*-2 However, resting-state functional connectivity cannot provide information about the temporal varia-
bility of blood oxygen-level-dependent (BOLD) signal amplitude. Notably, the human brain features inherently
moment-to-moment signal variation, which is not just neural noise but functional and adaptive®'*. Nonetheless,
the resting-state BOLD signal variability (variability hereafter) pattern along the AD disease continuum remains
largely unclear.

Although still under discussion, variability has been suggested to reflect the complexity and information
capacity of the neural systems'* and possibly correlates with balance between dynamical integration and seg-
regation in brain areas/networks (i.e. metastability)'®, which contributes to optimal brain functioning. Indeed,
in healthy young individuals (whose brains are assumed to be optimal), variability has been associated with
response speed and transition from fixation to cognitive-demanding tasks'®"'%. In a most recent study, increased
variability in the SN including the insula and decreased variability in most of the other brain regions have been
found across life span'®. Moreover, generally reduced variability has been found in healthy elderly compared with
healthy young individuals®’, and also in neuropsychiatric disorders (e.g., traumatic brain injury, psychosis and
bipolar disorder)?!-%. These results suggest that variability could be a promising and effective measure to reflect
disturbed brain functioning.

Despite its potential in revealing network complexity/metastability, variability has been understudied in AD
and aMCI, and the results were inconsistent. Compared with healthy individuals, AD has shown reduced var-
iability especially in the posterior DMN?4-%6, increased variability in different areas across studies such as the
parahippocampal gyrus/hippocampus, superior frontal gyrus, temporal gyrus, supplementary motor area and
postcentral gyrus?*%, or no altered variability?’. In aMCI, a recent meta-analysis of 12 resting-state fMRI studies
reported altered variability in widespread areas compared with healthy individuals, such as decreased variabil-
ity in areas that belong to the DMN and the SN, as well as increased variability in the visual network and the
hippocampus®.

Moreover, few studies have investigated the frequency-dependent variability pattern in AD or aMCI. Within
the commonly investigated low-frequency band (0.009-0.08 Hz) especially in resting-state studies?, slow4 (0.027-
0.073Hz) and slow5 (0.01-0.027 Hz) explain primary slow oscillations in grey matter hemodynamic signals, and
have strongest oscillations in the basal ganglia and anterior DMN respectively in healthy young individuals®,
which possibly contributes to different neural processing®. Previous work mostly measured frequency-specific
variability using amplitude of low-frequency fluctuations (ALFF) and/or fractional ALFF (fALFF) indices; the
findings in AD were limited and inconsistent. Briefly, Veldsman and colleagues found that AD had increased
slow4 variability in the DMN/visual network and slow 5 variability in the precentral/postcentral gyrus, while
decreased slow4 variability in the temporal pole?. Nevertheless, another study reported increased slow4/5 var-
iability in the temporal regions as well as increased slow5 and reduced slow4 variability in the basal ganglia in
AD compared with controls**. Additionally, there were lower level of variability in the posterior DMN at both
slow4 and slow5 in aMCI than that in healthy elderly®!. These inconsistent results might imply that a new index
for variability is needed.

While previous studies have provided important preliminary results of variability alterations in patients with
cognitive impairment, their limitations in frequency-dependent investigation, different pre-processing pipelines,
variability calculation methods, a lack of direct comparison between AD and aMClI, and relatively small sample
size preclude them from reaching a convincing conclusion. Moreover, to our best knowledge, there has been no
study on how frequency-specific variability relates to cognitive decline over time in AD spectrum.

In view of these gaps, we aimed to investigate frequency-dependent BOLD variability during resting-state in
a large sample of AD, aMCI, and age-matched healthy controls (HC) and evaluated their relationships with cog-
nitive impairment and decline. Given previous inconsistent results using ALFF/fALFF?#*>31, we employed a new
variability index defined as standard deviation (SD) of the BOLD signal'®!”2%2!, This SD-based variability index
is a direct measure of BOLD signal fluctuation and has not been examined in AD/MCI. Importantly, we aimed to
reveal consistent BOLD variability patterns using two commonly used fMRI pre-processing approaches, includ-
ing global signal regression (GSR) and independent component analysis (ICA). Based on previous evidence of
divergent DMN-SN network disruptions in AD”# and aMCI?*?, we hypothesized that compared with age-matched
controls, AD group would show lower DMN variability and higher SN variability while aMCI group would show
similar trend with lesser extent. We also sought to test if such variability changes would be related to neurodegen-
eration and cognitive performance at baseline and cognitive decline over time.

Results

Comparisons of variability patterns between AD, aMCl, and HC at slow5. With GSR, there was
a main effect of group mainly in the SN/subcortical areas (i.e., insula, rolandic operculum, amygdala, putamen),
medial temporal lobe (hippocampus and parahippocampal gyrus), visual network (VN) (i.e. lingual gyrus/fusi-
form gyrus), dorsal attention network (i.e. postcentral gyrus), as well as the DMN (angular gyrus) (Supplementary
Table 1).

Pair-wise comparisons showed that there was increased variability in the posterior DMN/VN (precuneus,
angular gyrus, cuneus, middle and superior occipital gyrus) in aMCI compared with HC (Fig. 1A, top panel).
Similarly, aMCI mainly had higher variability in the posterior DMN/VN compared with AD (Fig. 1B, top panel),
including the lingual gyrus, fusiform gyrus, angular gyrus, precuneus, cuneus, superior, middle and inferior
occipital gyrus. In contrast, decreased variability was found in the SN in aMCI compared with both HC (Fig. 1C,
top panel) and AD (Fig. 1D, top panel). Additionally, aMCI showed lower variability in the amygdala/hip-
pocampus as well as the putamen compared with AD, and reduced variability in the parahippocampal gyrus and
putamen compared with HC (Supplementary Table 1).
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Figure 1. Divergent slow5 hemodynamic variability changes in the default mode and the salience networks

in aMCI and AD. Using both GSR and ICA-based denoising methods, aMCI showed higher variability in the
default mode network compared with HC (A, top panel) and AD (B, top panel), and lower variability in the
salience network (INS) compared with HC (C, top panel). Specific to data denoising approaches, ICA-based
denoising revealed lower variability in the default mode network (PCUN) in AD compared with HC (E, bottom
panel), while GSR method showed lower variability in the salience network (INS) in aMCI compared with AD
(D, top panel). Results were obtained at p < 0.05 family wise error (FWE) correction on the cluster level, with

a previous height threshold of p < 0.001, superimposing on the MNI brain template. We also reported results
with a less stringent cluster-level threshold of p < 0.05 (uncorrected, k > 40), with a previous height threshold
of p<0.001 (for the insula at aMCI < HC [C, bottom panel] with ICA-based denoising). Same slices were
displayed to ease comparison between GSR approach and ICA-based denoising. Colour bar represents T value.
Abbreviations: AD = Alzheimer’s disease; aMCI = Amnestic mild cognitive impairment; ANG = Angular
gyrus; CUN = Cuneus; GSR = Global signal regression; HC = Healthy controls; ICA = Independent component
analysis; INS = Insula; PCUN = Precuneus; ROL = Rolandic operculum; SOG = Superior occipital gyrus.

After ICA-based denoising, there was a main effect of group mainly in the posterior DMN including the
precuneus/posterior cingulate cortex and VN (cuneus), and the SN (insula) (Supplementary Table 1). Group
comparisons replicated the GSR findings that aMCI had higher variability in the posterior DMN compared with
AD (precuneus; Fig. 1B, bottom panel) and HC (angular gyrus; Fig. 1A, bottom panel), as well as lower SN var-
iability compared with HC (insula; Fig. 1C, bottom panel), although the latter did not survive the cluster-level

SCIENTIFIC REPORTS |

(2020) 10:6457 | https://doi.org/10.1038/s41598-020-63540-4


https://doi.org/10.1038/s41598-020-63540-4

www.nature.com/scientificreports/

aMCl < HC C AD<aMCI

Figure 2. Divergent slow4 hemodynamic variability changes in the default mode and the salience networks
in aMCI and AD. Compared with HC, GSR approach revealed higher variability in the default mode network
(A, top panel) while lower variability in the salience network (B, top panel) in aMCI. However, after ICA-
based denoising, there was higher variability in the salience network in aMCI than in HC (A, bottom panel).
Moreover, AD showed lower variability in the default mode network (PCUN, ANG) compared with HC after
ICA-based denoising (D, bottom panel), which was absent for the GSR approach (D, top panel). Across both
data denoising methods, AD showed lower variability in the default mode network compared with aMCI
(C). Results were obtained at p < 0.05 family wise error (FWE) correction on the cluster level, with a previous
height threshold of p < 0.001, superimposing on the MNI brain template. Same slices were displayed to ease
comparison between GSR approach and ICA-based denoising. Colour bar represents T value. Abbreviations:
AD = Alzheimer’s disease; aMCI = Amnestic mild cognitive impairment; ANG = Angular gyrus;

GSR = Global signal regression; HC = Healthy controls; ICA = Independent component analysis; INS = Insula;
MOG = Middle occipital gyrus; PCUN = Precuneus.

FWE correction. Moreover, AD showed lower variability in the posterior DMN (i.e., precuneus/cuneus) than HC,
which was absent using GSR approach (Fig. 1E).

Comparisons of variability patterns between AD, aMCl, and HC at slow4. With GSR, there was
a main effect of group in the DMN including the precuneus and the angular gyrus, the SN including the insula,
as well as the VN including the middle occipital gyrus and cuneus (Supplementary Table 2). Group comparisons
revealed that aMCI had higher variability in the posterior DMN extending into the VN compared with both HC
(Fig. 2A, top panel) and AD (Fig. 2C, top panel), whereas aMCI showed lower variability in the SN including the
right insula (Fig. 2B, top panel). In parallel, there was lower variability in the anterior DMN (medial part of the
superior frontal gyrus) in AD compared with aMCI (Supplementary Table 2).

ICA-based denoising method replicated the GSR-based finding that AD had lower variability than aMCI in
the posterior DMN (angular gyrus) with the same FWE-corrected p < 0.05 cluster threshold, along with a smaller
precuneus cluster at p < 0.05 uncorrected level (Fig. 2C, bottom panel, Supplementary Table 2). In contrast to
the GSR results, there was higher SN variability (insula) in aMCI compared with HC (Fig. 2A, bottom panel).
Furthermore, AD had lower variability in the posterior DMN (precuneus/angular gyrus) compared with HC
(Fig. 2D, bottom panel), where aMCI displayed an intermediate level of DMN variability (precuneus) between
AD and HC (Supplementary Fig. 1; HC >aMCI > AD).

Given that not only similar, but distinct slow4 results were found between GSR and ICA-based approach, we
explored the possible explanations via examining the associations between the global signal time series and the
voxel-level slow4 time series within each of the three groups and compared them using two-sample t-tests. We
found that global signal presented differential associations with the DMN and SN time series at slow4 across
groups (Supplementary results; Supplementary Fig. S2), which potentially explain the inconsistent results of
slow4 using GSR and ICA approaches.

Moreover, we found distinct variability patterns of SD in the whole frequency band (Supplementary Table 3,
Fig. 3), which did not overlap with those regions identified in slow4 and slow5. This indicated that the observed
variability differences at slow4 and slow5 between groups were not due to differences of SD in the whole band.

In addition, controlling for motion and presence of significant cerebrovascular disease (CeVD) revealed com-
parable results at both slow5 (Supplementary Figs. S3 and S5) and slow4 (Supplementary Figs. S4 and S6).

Correlation analyses of variability with baseline cognition, hippocampal volume and cogni-
tive decline. At slow4, lower variability in the posterior DMN was associated with worse global cognition
and smaller hippocampal volume at baseline in all patients for both ICA-based denoising (Fig. 4A,B), and GSR
approach (Supplementary Table 4).
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Figure 3. Whole band hemodynamic variability comparisons between AD, aMCI, and HC with GSR and
ICA-based denoising. To ease results comparison between whole band and sub-frequency band (i.e., slow4 and
slow5), same slices from results of slow5 (see Fig. 1) and slow4 (Fig. 2) were also displayed. Across contrasts,
largely non-overlapping results were shown between whole band and slow4/slow5, using both GSR and ICA-
based denoising methods. Specifically, using GSR approach, aMCI showed higher variability mainly in the
DorsAttn and subcortical regions compared with AD (A, top panel), while lower variability in the cerebellum
(B, top panel) and VN (E, top panel) compared with AD or HC. Moreover, AD showed increased variability

in the anterior DMN (C, top panel) and reduced variability in the VN and subcortical regions (D, top panel)
compared with HC. ICA-based data denoising replicated lower VN variability in aMCI compared with HC

(E, bottom panel), higher variability in the anterior DMN (C, bottom panel) while lower VN variability (D,
bottom panel) in AD compared with HC. Specific to data-denoising approach, ICA-based denoising revealed
higher variability in the ECN (C, bottom panel) while lower variability in the posterior DMN/VN (D, bottom
panel) in AD compared with HC. Results were obtained at p < 0.05 family wise error (FWE) correction on the
cluster level, with a previous height threshold of p < 0.001, superimposing on the MNI brain template. We also
reported results with a less stringent cluster-level threshold of p < 0.05 (uncorrected, k >40), with a previous
height threshold of p < 0.001 (for the PCUN at aMCI > AD with GSR [A, top panel] and the SOG and DLPFC
at aMCI <AD [B, bottom panel] with ICA-based denoising). Colour bar represents T value. Abbreviations:
ACC = Anterior cingulate cortex; AD = Alzheimer’s disease; aMCI = Amnestic mild cognitive impairment;
CUN = Cuneus; DLPFC = Dorsolateral prefrontal cortex; DMN = Default mode network; DorsAttn = Dorsal
attention network; ECN = Executive control network; GSR = Global signal regression; HC = Healthy controls;
ICA =Independent component analysis; IPL = Inferior parietal lobule; LING = Lingual gyrus; MCC = Mid-
cingulate cortex; MOG = Middle occipital gyrus; MPFC = Medial prefrontal cortex; MTG = Middle temporal
gyrus; PCUN = Precuneus; PostCG = Postcentral gyrus; PreCG = Precentral gyrus; SMA = Supplementary
motor area; SOG = Superior occipital gyrus; THA = Thalamus; VN = Visual network. (Color should be used for
this figure in print; 2-column fitting image).

At slow5, lower variability in the posterior DMN and higher variability in the SN were related to worse global
cognition and smaller hippocampal volume respectively with GSR approach (Supplementary Table 3), which was
absent after ICA-based denoising.

Regarding the correlation between variability and cognitive decline over a 2-year follow-up, lower variability
in the posterior DMN at slow4 was associated with faster cognitive decline, which was consistent between the
ICA-based denoising (Fig. 4C) and GSR approach (Supplementary Table 3).

Discussion

BOLD signal variability is important for optimal brain functioning. To our best knowledge, our study is the first
and the largest study so far to investigate the frequency-dependent patterns of resting state BOLD signal variabil-
ity (SD) and their associations with cognitive impairment/decline in AD and aMCI, repeating with two separate
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Figure 4. Slow4 DMN hemodynamic variability was associated with baseline global cognition, hippocampal
volume and cognitive decline. After ICA-based denoising, lower variability in the posterior DMN was
associated with poorer baseline global cognition (A) and smaller hippocampal volume (B) at slow4.
Furthermore, over a 2-year follow-up, lower posterior DMN variability was associated with faster cognitive
decline at slow4 in all patients (C). GSR approach showed similar correlation patterns as described in the text.
ANG =angular gyrus; GSR = Global signal regression; ICA = Independent component PCUN = Precuneus.
*Correlations surviving multiple comparisons correction. (2-column fitting image).

data denoising approaches. Briefly, we found that both GSR and ICA-based denoising approaches converged
to show a reciprocal balance of frequency-specific variability changes in the DMN and SN in aMCI compared
with AD and/or HC. Importantly, for both data denoising methods, lower posterior DMN variability at slow4
related to poorer global cognition and smaller hippocampus at baseline, and faster cognitive decline over 2-year
follow-up. Our findings on divergent DMN-SN frequency-specific variability changes may represent an impor-
tant mechanism underlying brain functioning deterioration in early AD.

Consistent with previous findings of disrupted DMN network in aMCI'%-!2, altered DMN variability was
observed in the present study. We found increased DMN variability in aMCI with GSR at both slow4 and slow5,
while a recent meta-analysis of variability in aMCI reported decreased DMN variability?®. This discrepancy may
be explained by several differences, including the differences in sample size (103 aMCI in the present study vs. 26
aMCI on average in the meta-analysis study), methods of variability calculation (SD of the BOLD signal in the
present study vs. ALFF in the meta-analysis study) and whether different frequency bands were tested separately
etc. “Further studies are needed to refine factors” that could better account for the complex variability pattern at
different frequency bands in aMCI. The DMN has been suggested to be associated with internal processing of self
at rest, such as self-reflection, retrieving memory, or thinking of one’s future®®. Therefore, it might be speculated
that the DMN is a key network showing early disruption in aMCI in terms of aberrant hyper-activity, affecting
self-related processing in aMCIL

In contrast, we found lower SN variability in aMCI compared with AD and/or HC at both slow4 and slow5
with GSR, which is in line with previous variability studies in aMCI with GSR, ICA or neither?. With the insula
as a key node, it has been suggested that the SN plays an important role in salience processing, including detecting
salient information and directing attention toward or away from internal processing in concert with the DMN>*,
It would be interesting for future studies to combine resting-state and task-based fMRI data to test whether the
observed lower SN variability and increased DMN variability in aMCI (compared with AD/HC) are associated
with each other and how these network dynamics contribute to attention, memory and self-related processing
in aMCI.

Importantly, we replicated the observed DMN-SN balance at slow5 via a separate ICA-based denoising.
However, we observed a tendency of DMN-SN balance at slow4 in the opposite direction following ICA-based
denoising. Specifically, although direct comparison between aMCI and HC did not show significant group dif-
ference at slow4 (Supplementary Table 2), we found that ICA-denoising revealed lower DMN variability (cluster
from the comparison between HC and AD, Supplementary Fig. S1), and higher SN variability in aMCI compared
with HC. Nonetheless, both GSR and ICA results suggest a divergent variability changes between the DMN and
SN.

There was lower variability in the posterior DMN in AD compared with HC at both slow4 and slow5 only after
ICA-based denoising, replicating some previous findings®*?°, but not others*>*”. Most of the previous studies in
AD did not perform GSR or ICA-based denoising. Only one study used primary component analysis to regress
out signals of no interest and found no difference between AD and HC, but suffered from small sample size of
AD patients (n=10)%.

It should be noted that currently there is no gold standard on fMRI pre-processing methods, and previous
evidence has indeed shown that whether use GSR or other denoising methods could result in different results®.
Our discrepant results in AD compared with HC between GSR approach and ICA-based denoising can be pos-
sibly explained by the weaker associations of global signal with the DMN time series in AD compared with HC
(Supplementary Fig. S2A), and therefore regressing out global signal (GSR approach) may result in reduced group
differences in variability between AD and HC. Similarly, we speculate that the opposite SN variability between the
two data pre-processing methods at slow4 in aMCI compared with HC was due to a stronger association between
global signal and SN time series in aMCI (Supplementary Fig. S2B). Nevertheless, both approaches converge to
suggest a dynamical DMN-SN balance. Notably, anti-correlated pattern of functional connectivity between the
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DMN and SN has been found in AD and behavioural variant frontotemporal dementia”®. The divergent variabil-
ity patterns between the DMN and SN in aMCI as observed in the present study further support the reciprocal
relationships between these two networks. This may suggest that DMN-SN balance in variability plays an impor-
tant role at the prodromal AD stage.

Our findings of divergent DMN-SN variability changes at aMCI stage may reflect compensatory processes.
Briefly, segregation and integration balance between brain areas has been proposed to achieve optimal brain func-
tioning'®. Indeed, brain networks balance has been found at initial healthy ageing stage, with reduced resting-state
functional connectivity within brain networks (reduced integration) and decreased functional connectivity
between brain networks (increased segregation), but then followed by reductions in both as ageing proceeded™.
The authors suggested that the initial balance between brain networks segregation and integration represented
a compensatory effort during ageing process. In line with the balance perspective, we found balanced/divergent
DMN-SN variability patterns in aMCI compared with AD/HC. Importantly, following both GSR and ICA-based
denoising, the lower posterior DMN variability at slow4 was not only associated with poorer cognition and
smaller hippocampal volume at baseline, but also faster cognitive decline. For GSR only, reduced posterior DMN
variability at slow5 was also associated with worse baseline global cognition, and smaller hippocampal volume
was related to higher SN variability. We speculated that the reciprocal balance between the DMN and SN in
aMCI may represent an effort to obtain balance between networks, serving as a compensatory mechanism to
avoid further cognitive deterioration. Indeed, compensational mechanisms have been found in aMCI, such as
enhanced functional connectivity, effective connectivity between networks, or increased activity compared with
controls®” .

Taken together, the observed divergent DMN-SN variability pattern in aMCI may play an essential role in
gaining balance between networks to maintain cognitive functioning. This may represent a compensational pat-
tern against cognitive decline and disease progression in aMCI. Because of the close link between variability
and other brain measures such as functional connectivity'**’, multimodal studies are encouraged to elaborate
how BOLD variability interact with other brain structural and functional abnormalities or lead to downstream
neurodegeneration in early AD and how to intervene to allow aMCI individuals to maintain cognitive ability and
possibly slow down disease progression.

One important strength of this study was assessing variability separately at slow4 and slow5.
Frequency-dependent variability alterations in region-specific brain areas have been reported at slow4 and slow5
in different disorders*!~*¢. These results suggest both disease- and frequency-dependent disruptions of variability
patterns. There has only been one study that investigates frequency-dependent variability in aMCI patients, using
ALFF and fALFF?!. The authors demonstrated an interaction of variability between frequency bands (slow4 and
slow5) and group (aMCI vs. HC) in the angular gyrus and small clusters in the occipital and parietal lobule, which
was due to group differences at slow5 only. However, this study suffered from small sample size (n=24), lack of
GSR/ICA-based denoising, and did not find any variability-cognition associations.

Differently, using BOLD signal SD, we found both overlapping and distinct patterns of variability changes
between slow4 and slow5 in aMCI. This is in line with previous findings that there are both frequency-general
(e.g., presence of typical resting-state networks such as the DMN)*” and frequency-specific features (e.g., spatial
extent, homogeneity, variability and functional connectivity strength)*® across slow4 and slow5. Taken together
with the common and unique correlation patterns of variability with cognition/cognitive decline and hippocam-
pal volume between slow4 and slow5, we propose that slow4 and slow5 may have both mutual and differential
contributions to the cognitive profile and network-specific neurodegeneration along the AD spectrum. Moreover,
comparing results between GSR and ICA-based denoising showed more overlapping patterns for slow5 than
slow4. This might imply that slow4 (higher frequency) is more vulnerable to data pre-processing approaches.
Notably, our exploration in the whole band showed largely non-overlapping variability patterns in comparison
with slow4 and slow5 (Supplementary Table 3, Fig. 3), necessitating investigation into sub-frequency bands.
Future longitudinal studies are encouraged to further elaborate the effects of different frequency bands and differ-
ent data pre-processing approaches including more advanced approaches to remove physiological noise*, which
may provide complimentary information.

The present study had some limitations. Firstly, our study was cross-sectional. Longitudinal studies would be
interesting to track the variability changes along disease progression by comparing with their normal trajectories
across the human life span®*°!. Secondly, how frequency and network specific variability relates to disease mark-
ers (e.g., amyloid and tau) remain unclear. Future multimodal neuroimaging methods would be of help to test
potential interaction effects between variability and disease markers. Finally, it would be interesting to investigate
whether and how regional BOLD variability patterns relate to functional connectivity between regions and their
possible joint contribution to disease deterioration.

Conclusion

To conclude, we observed reciprocal DMN-SN variability balance in aMCI compared with AD/HC, possibly
representing functional compensation in aMCI before brain functional network breakdown and clinical pro-
gression to AD. Further support stemmed from the correlation findings that lower posterior DMN variability at
slow4 was associated with poorer cognition and smaller hippocampal volume at baseline, and predicted faster
cognitive decline over time in cognitively impaired patients (i.e., AD and aMCI combined). Our findings showed
that slow4 and slow5 BOLD variability presented both overlapping and differential patterns of spatial changes
and correlations with hippocampal volume and cognition in AD spectrum. Moreover, despite of the converging
findings between GSR and ICA approaches, we found discrepancy between the two methods especially at slow4,
which might be due to the differential associations between global signal and BOLD signals in the DMN and SN
regions across groups. The present findings underscore the importance of frequency-specific investigation of
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HC (n=48) aMCI (n=98) | AD (n=96) Fix: |p*
Age, yrs 72.04 (4.07)¢ 72.39 (7.24)° 74.43 (7.13) 3.04 0.05
Male/Female 21/27 52/46 37/59 4.19 0.12
Handedness, R/L 45/3 95/3 94/2 1.77 0.41
Ethnicity, C/non-C 43/5 81/17 74/22 3.44 0.18
Education, yrs 10.08 (4.78) 6.88 (4.91)° 4.92 (4.93)%4 17.93 | <0.001%*
Global cognitionb 0.00 (1.00) —3.29 (2.41)° —7.47 (3.13)%¢ 151.27 | <0.001*
Global cognitive decline” —0.07 (0.48) —0.05 (1.20) —1.81 (2.20)«¢ 2320 | <0.001*
CDR-SOB 0.14 (0.35)%¢ 0.90 (0.90)¢ 6.70 (2.73) 321.85 | <0.001*
MMSE 27.46 (1.90) 2391 (3.74)° 16.10 (4.40)¢ 179.85 | <0.001*
MoCA 24.38 (2.50) 19.15 (4.66)° 11.13 (4.67)%¢ 170.51 <0.001*
CeVD status, Y/N 0/48 52/46° 46/50¢ 41.28 | <0.001*
Ischemic heart disease, Y/N 2/46 9/89 8/88 1.17 0.56
Hypertension, Y/N 26/22 68/30 74/22¢ 7.92 0.019*

Table 1. Demographic and neuropsychological features of participants. Values represent mean (s.d). Groups
were compared on the listed variables with ANOVAs or chi-square tests where appropriate, with a threshold of
P <0.05 (two-tailed, *). *p values from the ANOVA between all three groups. *Global cognition value represents
standardized z-score of global cognition (one AD did not have global cognition data), and global cognitive
decline was defined as the difference between baseline and year 2 (year 2 minus baseline; longitudinal cognition
was not available for 43 AD, 25 aMCI and 16 HC). Significance of post-hoc pairwise comparisons (p < 0.05) was
indicated if group mean was lower compared with or distribution different from HC (c), MCI (d) or AD (e).

AD = Alzheimer’s disease; aMCI = Amnestic mild cognitive impairment; C/non-C = Chinese/non-Chinese;
CDR-Global = Clinical Dementia Rating Scale Global Score; CDR-SOB = Clinical Dementia Rating Scale Sum
of Boxes; CeVD = Cerebrovascular disease; HC = Healthy controls; MMSE = Mini-Mental State Examination;
MoCA = Montreal Cognitive Assessment; R/L = Right/left; Y/N = Yes/No.

BOLD variability, and might facilitate future intervention design in early AD based on the relationship between
DMNY/SN network breakdown and cognitive decline.

Methods
Participants. We studied 124 AD, 103 aMCI, and 49 HC from an ongoing project, recruited from memory
clinics in the National University Hospital, Saint Luke’s Hospital and nearby communities®***. Diagnoses were
made by psychologists, neurologists, and research personnel at weekly consensus meetings based on clinical
observation, lab tests (e.g., blood test), neuroimaging scans and neuropsychological assessments. Accordingly,
participants fulfilling the criteria of National Institute of Neurological and Communicative Diseases and Stroke-
Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)>* were identified as AD. aMCI
patients were identified if participants had both subjective cognitive complaint and objective impairment in at
least the memory domain (see Clinical and neuropsychological assessments), but not demented and remained func-
tionally independent. Finally, HC were also included who showed no objective cognitive impairment based on the
neuropsychological assessments, scored > 26 on the Mini-Mental State Examination (MMSE) (see Clinical and
neuropsychological assessments), and had no significant CeVD (see Supplement for definition of significant CeVD).
After image QC (see data pre-processing), 28 AD, 5aMCI and one HC were excluded. In summary, 96 AD, 98 aMCI
and 48 HC were included in the final analyses. The excluded AD patients were older and more severely impaired
compared with the included AD, without group differences in sex, handedness, ethnicity and education years
(Supplementary Table 5). Participants’ demographic and neuropsychological assessment performance (clinical
scores and global cognition) are described in Table 1 (see Supplement for participants inclusion/exclusion criteria).
The study was approved by the SingHealth Institutional Review Board and the National Healthcare Group
Domain-Specific Review Board, in accordance with the Declaration of Helsinki. Written informed consents were
provided by all participants.

Clinical and neuropsychological assessments. The Montreal Cognitive Assessment, MMSE, Clinical
Dementia Rating and a locally validated neuropsychological assessment battery were administered to all par-
ticipants by trained psychologists or clinicians®. The assessment battery consists of tests assessing two memory
domains, namely verbal memory and visual memory, and five non-memory domains, namely executive func-
tion, attention, language, visuomotor speed and visuoconstruction. A standardized global cognition z score was
obtained following previous publication®?, with higher z score indicated better cognition.

Image acquisition. The fMRI scanning was performed in a 3 T Siemens Magnetom Tim Trio scanner using
a 32-channel head coil at Clinical Imaging Research Centre, National University of Singapore. A whole-brain
T1-weighted anatomical image was acquired, using magnetization prepared rapid gradient recalled echo
(MPRAGE) sequence (192 sagittal slices, TR =2300 ms, TE = 1.9 ms, TI =900 ms, flip angle = 9°, FOV =256 x
256 mm?, slice thickness = 1 mm, voxel size = 1 x 1 X 1 mm?®). For the T2*-weighted resting-state functional
scanning, data were collected in the axial plane with an interleaved collection with participants’ eyes closed (48
slices, duration = 5.01 min, TR =2300 ms, TE =25 ms, flip angle = 90°, FOV =192 x 192 mm?, slice thickness =
3 mm, voxel size = 3 x 3 x 3 mm?).
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Data analysis. Data pre-processing. fMRI data were pre-processed with a standard pipeline using the
FMRIB Software Library (FSL)*® and Analysis of Functional NeuroImages software (AFNI)* as described pre-
viously*®3, Briefly, pre-processing of the structural images included reducing nonlinear image noise (SUSAN),
extracting brain tissue (skull stripping, BET), normalizing to the Montreal Neurological Institute (MNI) 152
standard space (FLIRT/FNIRT) and segmenting into grey matter (GM), white matter (WM) and cerebrospinal
fluid (CSF). Pre-processing steps for the functional resting-state data included excluding the first five volumes
for magnetic field stabilization, motion correction, despiking and grand-mean scaling, spatial smoothing with
a 3D 6-mm full-width/half-maximum (FWHM) Gaussian kernel, temporal band-pass filtering (whole band:
0-0.25Hz; standard low frequency range: 0.009-0.1 Hz) and detrending, co-registering to the anatomical image
(BBR) and subsequently to the MNT 152 standard space (FNIRT), and finally regressing out nuisance signals
from CSF, WM, whole-brain global signal and six motion parameters. Additionally, two separate sub-bands
were extracted from the standard low frequency range (0.009-0.1 Hz) following previous literature**, including
slow4 (0.027-0.073 Hz) and slow5 (0.01-0.027 Hz). Participants with excessive head motion (maximum abso-
lute motion >4 mm) and poor image quality (e.g., incomplete scan, failed pre-processing QC) were excluded.
There were larger head motion (maximum absolute) in AD (mean £ s.d. = 1.75+ 1.25) compared with aMCI
(mean=+s.d. = 1.38+£1.07) and HC (mean £ s.d. = 1.24 4 1.15) (ps < 0.05), without statistically significant dif-
ference between the latter two (p = 0.50). We therefore further controlled for motion in our statistical analyses.

Moreover, due to the controversy over GSR** (e.g., whether it induces spurious anti-correlations between
regions, whether it regresses out not only noise but also signal), we also applied another pre-processing pipeline
for the functional resting-state data using ICA-based denoising, which was commonly used in previous studies
of BOLD variability'”%. Briefly, (1) the same standard pre-processing steps as the GSR approach were first per-
formed, including excluding the first five volumes, correcting for motion, spatial smoothing with a 3D 6-mm
FWHM Gaussian kernel, grand-mean scaling, co-registering to the anatomical image (BBR) and subsequently to
the MNI 152 standard space (FNIRT). (2) Single-session ICA was conducted per participant to decompose data
into independent components, with a high pass filter cut-off of 0.01 Hz and automatic dimensionality estimation
(FSL/MELODIC)®. (3) FSL-FIX®*%* was applied to automatically identify ICA components as noise or signal,
using our data-specific trained-weights (see next paragraph for details). 4) Finally, the identified noise compo-
nents were removed from the resting-state data to obtain the denoised data for subsequent analyses.

Regarding the study-specific training, we randomly selected 10 participants from each of the three groups
(n=130 in total) as the training subjects. For each participant, the resulting ICA components were manually
classified into signal/noise as agreed between two raters (L.Z. and K.K.N) following criteria described in pre-
vious work®, which included (1) motion-related components (e.g., ring effect, sudden time series spikes or
low frequency signal drift), (2) vein-related components (e.g., signal from the sagittal sinus), (3) components
in relation to non-grey matter (e.g, cerebrospinal fluid, white matter), 4) components with high frequency and
high power, and 5) MRI-related components and components with sparsity (i.e., non-discernible spatial pattern
alternating between negative and positive values). We used relatively conservative rejection criteria to keep sig-
nals of interest as much as possible as suggested previously®*. This resulted in the highest balance ratio of 89.3%
between true-positive rate (TPR, rate of identifying signal components correctly) and true-negative rate (TNR,
rate of identifying noise components correctly) at the threshold of 20, following the recommended formula:
(3*TPR+ TNR)/46%63,

Variability analysis of resting-state data.  Resting-state fMRI data were analysed using the Statistical Parametric
Mapping (SPM12, v.6470, www.fil.ion.ucl.ac.uk/spm) and Matlab 7.11.0 (R2010b; the Math Works Inc., Natick,
MA). We focused on slow4 and slow5 because these two bands have been suggested to have functional mean-
ings instead of random noise or nuisance signals from white matter activity or physiological processes (e.g.,
respiration)>®*. An index of variability was calculated based on a method reported previously?!. Briefly, at each
voxel, the SD of the BOLD signal was first calculated in the whole band (0-0.25 Hz) and sub-bands, i.e., slow4
(0.027-0.073 Hz) and slow5 (0.01-0.027 Hz), separately. Fractional SD (fSD) in each sub-band was then obtained
by dividing the SD of the sub-band by the SD in the whole band, representing sub-band specific contribution rel-
ative to the total BOLD signal variability. Finally, voxel-wise fSD maps were converted into z-score maps (z-fSD)
by standardizing fSDs spatially across the whole brain in slow4 and slow5 separately, resulting in two z-fSD maps
for each participant.

To examine whole-brain group differences in variability between HC, aMCI and AD, z-fSD maps at slow4 and
slow5 were entered into separate one-way ANCOVAs, with group as the independent variable, and age, sex, edu-
cation and total grey matter volume (GMV; see supplementary methods) as covariates of no interest. Main effect
of group was tested, followed by pair-wise comparisons between any of the two groups.

To exclude potential confounding effects from difference in the whole band, a one-way ANCOVA was con-
ducted to compare z-score maps of SD in the whole band between AD, aMCI and HC, controlling for age, sex,
education, and GMV. Further validations have been done by taking maximum absolute motion or presence of
significant CeVD as additional nuisance variables.

For all analyses, statistical threshold was set at a voxel-defining threshold of p < 0.001, followed by a p < 0.05
FWE corrected at the cluster level. Moreover, to facilitate comparison between the GSR approach and ICA-based
denoising, we also reported results at a lower threshold surviving a voxel-level threshold of p < 0.001 and a
cluster-level threshold of p < 0.05 (uncorrected) and k > 40.

Correlation analysis. 'We performed correlation analyses of the variability with 1) global cognition at baseline;
and 2) bilateral hippocampal volume at baseline (see supplementary methods).
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Furthermore, we examined whether the variability related to global cognition decline over time, defined as the
difference between baseline and year 2 (year 2 minus baseline).

For all correlation analyses, we focused on the brain clusters showing group differences between aMCI and
HC or between AD and HC (including clusters surviving the voxel-level threshold consistently using both GSR
and ICA-based denoising) (n =3 for slow4, and n =6 for slow>5 for both data denoising methods). Correlation
analyses were performed in all patients after controlling for age, sex, education years and total GMV. The cor-
relation analyses were performed within each frequency band separately, applying Bonferroni correction for
the number of clusters of interest per frequency band. Variability estimates of the clusters were extracted using
MarsBaR (http://marsbar.sourceforge.net). Statistical significance was set at p < 0.05 (two-tailed).
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