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We propose to use dynamic Bayesian networks (DBN) to learn the
structure of effective brain connectivity from functional MRI data in an
exploratory manner. In our previous work, we used Bayesian networks
(BN) to learn the functional structure of the brain (Zheng, X.,
Rajapakse, J.C., 2006. Learning functional structure from fMR images.
NeuroImage 31 (4), 1601–1613). However, BN provides a single snap-
shot of effective connectivity of the entire experiment and therefore is
unable to accurately capture the temporal characteristics of connecti-
vity. Dynamic Bayesian networks (DBN) use a Markov chain to model
fMRI time-series and thereby determine temporal relationships of
interactions among brain regions. Experiments on synthetic fMRI data
demonstrate that the performance of DBN is comparable to Granger
causality mapping (GCM) in determining the structure of linearly
connected networks. Dynamic Bayesian networks render more accurate
and informative brain connectivity than earlier methods as connectivity
is described in complete statistical sense and temporal characteristics of
time-series are explicitly taken into account. The functional structures
inferred on two real fMRI datasets are consistent with the previous
literature and more accurate than those discovered by BN. Further-
more, we study the effects of hemodynamic noise, scanner noise, inter-
scan interval, and the variability of hemodynamic parameters on the
derived connectivity.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

The brain areas involved in various cognitive tasks can now be
identified quite accurately and reliably through functional
Magnetic Resonance Imaging (fMRI) experiments (Friston et al.,
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1995; Rajapakse and Piyaratna, 2001; Wang and Rajapakse, 2006).
However, functional specialization of the brain does not provide a
holistic view of brain function and does not describe how different
brain regions communicate and interact with one another.
Considering the multiple processes taking place at different brain
regions and interacting with one another in executing a specific
task, extracting brain connectivity from fMRI data facilitates our
understanding of brain function (Buchel and Friston, 1997).
Recently, there has been an increasing interest in functional
integration studies to infer brain connectivity, especially for high-
order brain functions. In fMRI, the activity of brain is measured by
time-series of signals depending on blood-oxygenation-level-
dependent (BOLD) contrast. Given multivariate voxel-based
time-series, several techniques have been proposed to use fMRI
to characterize effective connectivity of the brain (Friston, 2003;
Goebel et al., 2003; McIntosh and Gonzalez-Lima, 1994;
Rajapakse et al., 2006; Zheng and Rajapakse, 2006).

Structural equation modelling (SEM) decomposes interregional
covariances of fMRI time-series to find functional interactions
among brain regions (Bullmore et al., 2000; McIntosh and
Gonzalez-Lima, 1994; Mechelli et al., 2002). The covariance
structure models the interactions of underlying neural systems only
in second-order statistical sense and therefore does not render
effective connectivity or the “cause and effect ” relationships among
brain regions. Dynamic causal modelling (DCM) characterizes the
dynamics of interactions among states (of brain regions) with
bilinear approximations of intrinsic coupling (among neuronal
states) and the influence of external inputs. An extended balloon
model is used in DCM to model hemodynamic response, which
enables inference of interactions at the neuronal level (Friston,
2003). Both SEM and DCM are confirmatory in the sense that the
analysis of brain connectivity requires a priori model to begin with
and is inapplicable for higher-order functions unique to human such
as language or cognition (Bullmore et al., 2000).

Granger causality mapping (GCM) extends the vector auto-
regressive (VAR) technique to capture interactions among brain
regions, assuming a causal and dynamic system of linear inter-
actions, driven by stochastic innovations (Goebel et al., 2003;
Harrison et al., 2003). A graphical approach linking the notions
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of graphical models and Granger causality has been applied to
describe dynamic dependencies in neural systems (Eichler, 2005).
Nevertheless, a multi-step procedure fitting autoregressive models
at each step is required to identify networks and therefore limits its
applicability for large networks.

Recently, two techniques based on Bayesian networks (BN)
(Zheng and Rajapakse, 2006) and independent component analysis
(ICA) (Rajapakse et al., 2006) were proposed to derive effective
connectivity of the brain from functional MRI data in an
exploratory manner. Bayesian networks do not provide an explicit
mechanism to represent temporal dependencies among multiple
processes at brain regions and instead give one snapshot of brain
connectivity, taking into consideration the whole experiment.
Therefore, neural systems derived with BN do not fully describe
causal relationships among brain regions. Moreover, because of
equivalent properties of BN, directions of some edges are
indeterminate and could be bi-directional (Chickering, 1995).

In this paper, we propose dynamic Bayesian networks (DBN) to
derive the effective connectivity of the brain by modelling fMRI
time-series in a Markov chain. DBN, an extension of BN, admits a
class of nonlinear continuous time interactions and provides a
direct mechanism to model temporal relationships among brain
regions. Functional MRI time-series of activated voxels are
modelled with first-order stationary Markov chains. The inter-scan
interval (ISI) of fMRI is used as the interval between two
consecutive instances of the Markov chain. The connectivity
between two time instances (or scans) is modelled in a transition
network of two layers of brain regions (or nodes). In a stationarity
setting, the connectivity of the transition network renders the
effective connectivity of the brain.

Dynamic Bayesian networks may assume a known or unknown
structure, and full or partial observability of states at the nodes. The
states of activated brain regions are fully observed as intensity
variations of fMRI time-series. Beginning with an unknown
connectivity structure, we find the best structure fitting fMRI data
in an exploratory manner. A greedy search or an expectation
maximization (EM) provide only a local search of the structure of
DBN. Starting with a partly connected structure, we use a Markov
chain Monte Carlo (MCMC) method to derive the structure of the
connectivity among brain regions from fMRI data. The MCMC
method attempts to find a globally optimal solution by sampling a
collection of highly probable structures from the equilibrium
distribution of the Markov chain (Husmeier, 2003b).

We describe DBN and structure learning algorithm in the
Method section. In experiments, synthetic fMRI data is used to
illustrate the robustness of our approach and compare with GCM.
The method is further demonstrated by exploring functional
structures from real fMRI data obtained in two experiments: a
silent word reading task and a counting Stroop task. A comparison
between structures derived from BN and DBN is also provided.

Method

This section introduces DBN for modelling effective brain
connectivity from functional MRI data. Then, a MCMC algorithm
for structure learning is described.

Neural system modelling with DBN

When modelling the brain connectivity, the nodes in the
Bayesian network are associated with activated brain regions while
the edges characterize the interactions among regions. Consider a
neural system of n brain regions activated by a sensory or cog-
nitive task and let the regions be indexed in a set I={i : i=1, 2, …
n}. The activation of a brain region is measured by the average
fMRI time-series over the region. Let xi be the activation mea-
suring the hemodynamic response of region i.

Bayesian networks (BN) describe the probability distribution
over the activation of brain regions, where the graphical structure
provides an easy way to specify conditional interdependencies for
a compact parameterization of the distribution. The BN is defined
by a structure s and a joint distribution over the set of time-series
x={xi : i∈ I}. The BN structure is a directed acyclic graph (DAG)
characterized by the absence of directed cycles. If ai denote the set
of activations of the parents of the region i, a DAG offers a simple
and unique way to decompose the likelihood of activation in terms
of conditional probabilities:

PðxjhÞ ¼ ∏
iaI

Pðxijai; hiÞ ð1Þ

where θ={θi : i∈ I} represents the parameters of the conditional
probabilities.

Dynamic Bayesian network extends BN model to incorporate
temporal characteristics of the time-series x. Let us explicitly
represent temporal processes of brain regions and x(t)={xi(t):
i∈ I} representing the activations of n brain regions at time t. The
instances t=1, 2, …T correspond to the times when brain scans are
taken and T denotes the total number of scans. In order to model
the temporal dynamics of brain processes, we need to model a
probability distribution over the set of random variables ⋃t=1

T x(t)
which is rather complex and practically prohibitive.

To avoid an explosion of the model complexity, we assume the
temporal changes of activations of brain regions are stationary and
first-order Markovian:

Pðxðt þ 1ÞjxðtÞ; N xð1ÞÞ ¼ Pðxðt þ 1ÞjxðtÞÞ ð2Þ

where the transition probabilities P(x(t+1)∣x(t)) are independent
of t. The transition network represents the connectivity structure
between two consecutive brain scans, which renders the joint
distribution of all possible trajectories of temporal processes. The
structure of the DBN is obtained by unrolling the transition
network over consecutive scans for all t=1, 2, …T. The first-order
stationary assumption provides a tractable causal model that ex-
plicitly takes into account the temporal dependencies of brain
processes. Higher-order and non-stationary Markov models allow
more complex temporal processes and connectivity patterns. How-
ever, such complex models pose obvious challenges in estimating
structures and parameters.

Unlike BN, DBN is capable of modelling recurrent networks
while still satisfying the acyclic constraint of the transition
network. This is an important advantage of modelling neural
system with DBN as there exist cyclic functional networks in the
brain, such as cortico-subcortical loops. Inter-scan connections to
same brain region itself are considered as default prior connections
and their parameters are allowed to adapt. We do not allow intra-
scan connections because the effect on a brain region takes place
with a time delay after its cause. Although instantaneous inter-
actions may exist due to low temporal sampling and hemodynamic
modulation of fMRI, the determination of such interactions
remains as a limitation of neural systems modelling with functional
MRI.
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Structure learning of DBN

With stationary and first-order Markovian assumptions, the
transition network of DBN has two layers of n random variables,
each representing n brain regions, connected in a structure s. As
the inter-scan connections are always forward, conditional
distributions are only defined for the nodes of the second layer
given the first layer. As we consider the connectivity in the
transition network, in what follows, the time variable is dropped.
The optimal structure s* of brain connectivity is obtained by the
maximum a posteriori (MAP) estimation:

s* ¼ argmax
s

PðsjxÞ ð3Þ

From Bayes rule, P(s∣x)∝P (x∣s)P (s) where P(s) denotes the
prior probability of the structure. The likelihood of the data given
a particular structure s, requires marginalization over the para-
meters θ:

PðxjsÞ ¼ ∏
iaI

Z
Pðxijai; hiÞPðhiÞdhi ð4Þ

We use multinomial conditional distribution in order to capture
non-linear dependence relations among brain regions, which is
more appropriate for modelling effective connectivity of human
brain than normal distribution. With multinomial distribution
assumption, the integral in Eq. (4) is analytically tractable
(Husmeier, 2003b) and the Bayesian score can be used to
measure the fitness of structure. However, this choice requires
discretization of the data.

Suppose there are K discretized levels and Λ={k: k=1, 2, …
K}, each random variable xi∈Λ and the conditional probabilities
among nodes are represented as a stochastic matrix of co-
occurrences. If the random node xi has Ji number of parent nodes,
the parameters for conditional probabilities of xi include a set of
parameters θi={θij : j=1, 2,…KJi} where θij={θijk : k∈Λ}. Di-
richlet priors are assumed for this set of probabilities with the
corresponding prior model parameters αij={αijk : k∈Λ}:

P hijjaij
� �GðPkaK aijkÞ

CkaKGðaijkÞ ∏
kaK

h
aijk�1

ijk ð5Þ

where αijkN0 and Σk θijk=1. The values of θijk are estimated by
the number of corresponding co-occurrences Nijk throughout the
time-series based on the maximum likelihood criterion. Bayesian
Dirichlet metric is used for the assignment of αijk and the total
likelihood can be calculated by (Heckerman et al., 1995):

P xjsð Þ ¼ ∏
iaI

∏
KJi

j¼1

GðaijÞ
Gðaij þ NijÞ ∏

kaK

Gðaijk þ NijkÞ
GðaijkÞ ð6Þ

The number of network structures increases super-exponentially
with the number of regions and hence finding the optimal structure
is NP-hard. Heuristic local search algorithms like hill-climbing
have been attempted. We resort to Markov Chain Monte Carlo
(MCMC) algorithm for structure learning with DBN in a global
search sense since direct sampling from the posterior probability is
impossible. MCMC simulation converges to an equilibrium dis-
tribution, sampling of which provides the solution of the optimal
structure. In what follows, we describe the MCMC algorithm
adopted for structure learning (Husmeier, 2003b).
Given a network structure sold, a new structure snew is proposed
with a probability Q(snew∣sold) and accepted with Metropolis–
Hastings (MH) acceptance criterion (Hastings, 1970):

min 1;
PðsnewjDÞ
PðsoldDÞ

QðsoldjsnewÞ
QðsnewjsoldÞ

� �
ð7Þ

The iteration of the above procedure generates a Markov chain
converging in distribution to the true posterior distribution. In
practice, a new network structure is proposed by applying one of
the elementary operations such as deleting, reversing, or adding an
edge, and then discarding those structures that violate the acyclic
condition. The Hastings ratio is found by

QðsoldjsnewÞ
QðsnewjsoldÞ ¼

NðsoldÞ
NðsnewÞ ð8Þ

where N(s) is the size of the neighborhood of structure s. That is,
the number of acyclic structures that can be obtained from s by
application of one of the elementary operations such as deletion,
addition, or reversion of an edge.

The parameters of MCMC simulation are the lengths of the
burn-in phase, the sampling phase, and the sampling interval. We
make no constraint on the maximum fan-in and the flat prior
expectation of nodes with non-zero fan-out of nodes, leading to a
uniform prior distribution for network structures. Bayesian score is
used to measure the fitness of the structure, which integrates over
all parameters.

The steps in the structure learning algorithm are as follows:

(1) Initialization: initialize the network structure s with all
connections set to zero, except that inter-scan self-connec-
tions set to 1. Time-series xi(t) of every region i∈ I is dis-
cretized into ternary form [−1, 0, 1] with

diðtÞ
1 if xiðtÞz x̄i þ ðxi;max � x̄iÞ=3;

�1 if xiðtÞV x̄i � ðx̄i � xi;minÞ=3;
0 otherwise;

8<
: ð9Þ

where x̄i, xi,min, xi,max are the mean, minimum, and maxi-
mum values of time-series xi=(xi(t): t=1, 2,…T), respectively,
and di(t) represents the corresponding discretized time-series.

(2) Burn-in phase: propose a new network structure by applying
elementary operations such as addition, deletion, or reversion
of edges to the old network. Structures violating the acyclic
constraint are discarded. Accept the structure based on
Metropolis–Hastings (MH) acceptance criterion. Repeat the
same procedure for a sufficient number of times until
convergence to the true posterior probability is achieved.

(3) Sampling phase: follow the same procedure as in step 2 and
collect the samples for every fixed interval.

(4) Inference: calculate the final structure and parameters by
averaging over all sampled structures in step 3.

Experiments and results

We illustrate our method with experiments on synthetic data as
well as on two real fMRI datasets from fMRI Data Center,
Dartmouth College (fMRIDC, 2004): silent reading task (access
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number 2-2000-11189) and counting Stroop task (access number:
2-2000-1123B). Bayesian network simulations were done in
MATLAB, using two toolboxes: Bayes Net Toolbox (BNT)
(Murphy, 2001) and Inferring Dynamic Bayesian Networks with
MCMC toolbox (Husmeier, 2003a).

Synthetic data

Synthetic fMRI datasets were generated to test the robustness of
the proposed method in detecting the underlying neural system and
to compare its performance with Granger causality modelling
(GCM). The effects of temporal sampling, scanner noise, hemo-
dynamic noise, and HRF variability on deriving brain connectivity
were also evaluated.

Data generation
In order to investigate whether and to what extent DBN is

capable of detecting neuronal interactions, we constructed syn-
thetic datasets emulating hemodynamic modulation and temporal
sampling of BOLD responses in fMRI (Roebroeck et al., 2005).
Fig. 1. Generation of synthetic data: (a) three steps involved in generation of time-s
series generated at regions r1 and r2, respectively.
The steps (see Fig. 1(a)) involved in the generation of fMRI data
are:

(1) VAR modelling: generate time-series x of brain regions with a
predefined VAR model and additive Gaussian noise. The
time interval between consecutive time instances is equal to
inter-scan interval (ISI) of 100 ms and the length of time-
series T=3000 (i.e., 300 s). A first-order vector autoregres-
sive (VAR) model was used to generate the time series:

xðt þ 1Þ ¼ CxðtÞ þ uðtÞ ð10Þ
where C denotes the linear connectivity matrix and u(t) is the
uncorrelated Gaussian innovation with zero mean and
covariance matrix Σ with diagonal elements equal to 1 and
off-diagonal elements equal to 0.

C ¼ �0:9 0
0:4 �0:9

� �
ð11Þ

For an example with two regions n=2, the connectivity
matrix C = {cij}2× 2 of the neural system in Fig. 1(b) was set
eries; (b) an example structure of two regions; (c) and (d) correspond to time-



Fig. 2. A transition network of a DBN representing a neural system
consisting of five brain regions. The values at the edges represent the
strengths of connections.
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as in Eq. (11). The synthetic time-series generated are shown
in Figs. 1(c) and (d). The connectivity matrix C defines
directed inter-regional connection from region r1 to r2 but
not in the reverse direction and the time-series of all the
regions are generated in the lower frequency range because of
the absence of high-frequency influences due to hemody-
namic modulation in fMRI. As BN has been shown to be
superior than SEM in obtaining the connectivity structure
(Zheng and Rajapakse, 2006), we chose the above model of
synthetic data to enable comparison with GCM.

(2) HRF modulation: modulate time-series by convolving with
the canonical hemodynamic response function (HRF) con-
sisting of a mixture of two gamma functions:

f tð Þ ¼ 1

G s1
s3

� 	 d
s3


 �
s1
s3w tð Þ

s1
s3
�1e�

d
s3
w tð Þ

� 1

s5G
s2
s4

� 	 d
s4


 �
s2
s4w tð Þ

s2
s4
�1e�

d
s4
w tð Þ ð12Þ

where d ¼ RT
16, repetition time RT=100 ms, delay of response

τ1=6 s, delay of undershoot τ2=16 s, dispersion of response
τ3=1 s, dispersion of undershoot τ4=1 s, ratio of response to
undershoot τ5=6, and the length of kernel τ6=32 s. Γ (·)
represents the gamma function and w tð Þa 0; 1d ; N s6

d

� 

. After

normalized to zero mean and unit variance, a certain amount
σ1 of white Gaussian noise was added to emulate
hemodynamic noise.

(3) MR sampling: acquire final time-series by down-sampling
the signals at every Δ second, corresponding to the ISI of MR
scanner. After normalization of signals individually, amount
σ2 of Gaussian noise was added to represent errors in
measurement and acquisition (or scanner noise).

Using the above procedure, we generated neural systems con-
sisting of different number of brain regions. The default parameters
were u(t)∼N (0, 1), hemodynamic noise σ1=0, scanner noise
σ2=0, and inter-scan interval Δ=0.5 s.

Parameter settings
For MCMC simulation, two sets of parameters were tested:

[3000, 3000, 5] and [50000, 50000, 100] for lengths of burn-in
phase, sampling phase, and sampling interval, respectively. The
networks derived for synthetic data with two sets were approxi-
mately the same and only the results of [3000, 3000, 5] are
reported here. Longer burn-in phase or sampling phase may be
more likely to find the globally optimal solution at the expense of
computation time.

The robustness of our method of deriving DBN for inferring
connectivity structure was evaluated with respect to four aspects:
(1) the number of brain regions n, (2) the ISI Δ in sampling, (3) the
hemodynamic noise σ1, and (4) the scanner noise σ2. For different
values of above parameters, synthetic fMRI datasets were
generated: n from 3 to 8; Δ from 0.5 s to 3.0 s; the length of
time-series T from 600 to 100 points covering 300 s and
representing fMRI experiments with RT from 0.5 s to 3.0 s; the
mean of both signal and noise were set to zero; the standard
deviation of signal was set to 1.00; the standard deviations of
noises σ1, σ2∈{0.00, 0.05,…0.50}.

An example network of five regions n=5 is shown in Fig. 2.
Time-series data of T=600 time points were generated. The
execution time in deriving the DBN with MCMC parameters
[3000, 3000, 5] was approximately 4 min on a Pentium IV 2.4 GHz
machine having 512 MB memory and running MATLAB (version
7.0) in Windows XP environment.

Performance evaluation
The square error e2 between the true connectivity structure C=

{cij} and the estimated structure Ĉ={ĉij} is measured by the square
error between the elements of the matrices defining the structures:

e2 ¼ 1
2n2

Xn
i¼1

Xn
j¼1

cij � ̂cijÞ2;
�

ð13Þ

the elements C and Ĉ were scaled to the range [0, 1] for
comparison with GCM results. For a given structure, five different
datasets were generated following the above procedure with
random initializations. MCMC simulation used the same set of
parameters [3000, 3000, 5]. The mean and standard deviation of
square errors e2 are reported.

Fig. 3 shows the effect of error in deriving the connectivity
structure with our approach and GCM. Each curve in the plots
corresponds to a structure with a specified number of regions.
Small standard deviation of errors (b0.03) in estimating the
structure of effective connectivity in all simulations indicate the
effectiveness of the algorithm. The errors at various sampling step
sizes Δ are shown in Fig. 3(a). As seen, derived DBN structures are
capable of representing neural systems closer to the ground truth,
with negligible error up to 3 s of sampling steps. As the number of
regions of the structure increases, the error increases, indicating a
higher probability of the algorithm to trap in a local minimum.
Figs. 3(c) and (e) show an increase in error with the amounts of
hemodynamic noise σ1 and scanner noise σ2. Effects of both
hemodynamic and scanner noise are more severe than those
contributed by sampling and largely responsible for error irres-
pective of the number of regions.



Fig. 3. Comparing the performance of DBN (left column) and GCM (right column) for learning connectivity structure of synthetic fMRI data: the effects of (a)
and (b) sampling step size, (c) and (d) the amount of hemodynamic noise, and (e) and (f) the amount of scanner noise, in estimating the connectivity structure.
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Table 1
Comparison of error in structure learning on synthetic data, considering HRF
variability

Regions Significance of error difference (p-value)

n Sampling interval Hemodynamic noise Scanner noise

3 pb0.01 pb0.01 –
4 p=0.03 p=0.02 p=0.03
5 pb0.01 p=0.04 –
6 pb0.01 p=0.02 pb0.01
7 pb0.01 – –
8 p=0.01 pb0.01 pb0.01

A ‘–’ indicates no significant increase in the error of detecting connectivity
due to the variability of HRF parameters at the level of pb0.05.
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Comparison with GCM
Granger causality mapping (GCM) (Goebel et al., 2003;

Roebroeck et al., 2005) was used to derive neural systems of
synthetic datasets, using the algorithm proposed in Bagarinao and
Sato (2002). Schwarz–Bayesian Information Criterion is used to
estimate the optimal order of VAR model.

Three figures in the right column, (b), (d), and (f), of Fig. 3
demonstrate the effects of sampling step size, hemodynamic noise,
and scanner noise on the accuracy of the networks derived by
GCM, respectively. The order of 1 was always selected as the
optimal order based on Bayesian Information Criteria. Despite the
information loss in the discretization of time-series, DBN show
comparable performance with GCM. Both methods had similar
effects but DBN had less error than GCM at all sampling step sizes.
Both techniques suffered from increased scanner and measurement
noise as the number of regions is increased from 3 to 8. GCM is
less vulnerable to hemodynamic and scanner noise than DBN,
especially for network structures consisting of 3 or 4 regions. As
the level of noise increases, the loss of information resulting from
discretization influences the accuracy of DBN derived networks.
Interestingly, sometimes larger number of regions showed lower
average square error for both DBN and GCM.

Robustness to HRF variability
The characteristics of HRF vary across brain regions and

subjects (Rajapakse et al., 1998). In order to evaluate the
robustness of DBN to the variation of HRF, different HRF were
generated by randomly selecting the values of six parameters
within their practical ranges: delay of response τ1∈ [4.0, 8.0]s,
delay of undershoot τ2∈ [12.0, 20.0]s, dispersion of response
τ3∈ [0.5, 1.5]s, dispersion of undershoot τ4∈ [0.5, 1.5]s, ratio of
response to undershoot τ5∈ [4.0, 8.0], and the length of the kernel
τ6∈ [28.0, 36.0]s. The neural activity of every region of different
subjects was convolved with a randomly selected HRF.

For the same structure s, at a given sampling step size,
hemodynamic noise level, and scanner noise level, five different
datasets were generated with random initialization, hemodynamic
modulation, and temporal sampling. The synthetic datasets were
generated and the effects of sampling, hemodynamic noise, and
scanner noise were tested, in the manner as described in Parameter
settings section. In order to evaluate the capability of our approach
handling the variability of HRF among different brain regions and
subjects, we compared the averages of square error in learning
structures on data generated with the canonical HRF and with
varying HRF parameters. Paired T-test was used to examine
whether there is a significant increase in the error for structures
learned. Table 1 gives p-values of comparisons. As seen, the
variability of HRF significantly affects the learning of structures
with varying sampling rate but less with hemodynamic or scanner
noise.

Silent reading task

Functional MRI data on a silent reading task were collected
from six normal subjects. The task involved silent reading of words
and pseudowords as soon as they appeared on the screen. The
resting condition involved fixating to a cross in the middle of the
screen. The data of each subject contains 360 3D brain images. For
more details, reader is kindly referred to Mechelli et al. (2000).

In order to obtain connectivity structure, SPM analysis was
performed for activation detection. The time courses of signifi-
cantly activated regions were extracted by taking the first principal
component of time-series of voxels at the peak-activated site and
its neighbors at the cluster level for all subjects (Zheng and
Rajapakse, 2006). Time-series of all subjects were concatenated
together to form the dataset for deriving brain connectivity with
BN and DBN. MCMC simulation was applied on discretized data.
As the number of regions involved in the dataset is large (n=10),
we used longer burn-in and sampling phases, and a large sampling
interval [50000, 50000, 100] to avoid trapping into local optimum.

Fig. 4 shows learned network structures from BN and DBN.
For DBN, edges having probabilities of connectivity greater than
0.5 were selected. As seen, similar connectivity structures were
found in both BN and DBN. The diagonal edges (from top left to
bottom right) are not compared as every region is assumed to be
related to its own history in DBN framework but not in case for
BN. As seen from the structure derived from DBN, left hemi-
sphere has more directed connections to the right hemisphere,
which is consistent with the previous findings that left hemisphere
is more involved in language processing. DBN found several
connections previously reported in the literature for language
processing: LSPL→RSPL (Honey et al., 2002) and REC→LEC
for homologous interconnection (McIntosh et al., 1994), LSPL→
RIFG for phonemic decisions (Honey et al., 2002), LMTC→
LIFG for semantic phonologic retrieval (McKiernan et al., 2001;
Matsumoto et al., 2004), LMTC→REC for memory retention
(McIntosh et al., 1994), REC→LMFG and REC→ RMFG for
semantic decision and analysis (Krause et al., 1999). Temporal
relationships of REC and RMTC with LEC and LMTC were not
found in BN, most likely due to bi-directional possibility of
connections (Zheng and Rajapakse, 2006). In contrast, DBN
found a recurrent network (LEC→LMTC→RMTC→REC→
LEC) associated with retaining and recalling words from the
memory, in which MTC is in charge of integrating inputs from
lower level auditory and visual areas for retaining in the memory.

As the extrastriate cortex (EC) and superior parietal lobe (SPL)
are important in visual representation and analysis in word
processing, respectively, the functional connection between EC
and superior parietal lobe (LSPL→LEC, LSPL→REC) and other
connections with prefrontal cortex (LSPL→RIFG, LMFG→
RSPL, REC→RMFG, REC→LMFG, RIFG→LEC, LIFG→
LEC, LMFG→LEC) enable the perception of visual word form
(Kolb and Whishaw, 1996). Connections between MTC and SPL
indicate their close relationship in dealing with visual words
(LSPL→RMTC, LMTC→RSPL). Within prefrontal cortex, intra-
and interhemispheric connections were found similar to BN
(LIFG→RMFG, LIFG→RIFG). The connection (LMFG→



Fig. 4. The neural system learned from fMRI data on silent reading task with (a) BN and (b) DBN. L(R)EC: left(right) extrastriate cortex (BA 18/19), L(R)SPL:
left(right) superior parietal lobe (BA 7), L(R)MTC: left(right) middle temporal cortex (BA 21/22), L(R)IFG: left(right) inferior frontal gyrus (BA 44/45), L(R)
MFG: left(right) middle frontal gyrus (BA 46/9). A shaded square in the transition diagram of DBN indicates the existence of a connection from a region in the
row to a region in the column. Rows and columns in DBN represent brain regions at time instances t and t+1, respectively.
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LIFG) found in DBN was absent from BN, which has been earlier
reported in an experiment demanding semantic categorization and
subvocal rehearsal (Bullmore et al., 2000).

Counting Stroop task

Functional MRI data in a counting Stroop task investigating the
performance of females with fragile X-syndrome on cognitive
interference processing compared to normal subjects were
analyzed. There are two conditions in the task: neutral and
interference (Please refer to Tamm et al., 2002 for more details
about the task and data collection). Using SPM2, time-series were
extracted to derive connectivity. We explored the networks
involved in neutral and interference counting Stroop condition of
normal controls and attempted to make a comparison. Ten regions
were found activated in neutral condition while 12 regions were
found activated in the interference condition. Time-series of 14
normal control subjects were concatenated together to form the
training data; same settings of MCMC simulation for learning the
structure of DBN were used as for silent reading task.

Fig. 5 shows the learned structures for neutral and interference
conditions by BN (top) and DBN (bottom). Note that the region
with the empty diagonal square (from top left to bottom right)
means that the region is not activated in the task. Fig. 6 shows the
networks with connection strengths derived from DBN. The
connectivity structures found by BN and DBN were quite similar:
(1) a large amount of connections within medial cortices for both
conditions, indicating the responsibility of counting function; and
(2) the number of intra-hemispheric connections in left brain, and
between left brain and medial cortices were much fewer in neutral
condition than interference condition, indicating more involvement
of language processing and decision making in the left hemisphere
under interference effects.

Anterior cingulate cortex (ACC), connected with the prefrontal
cortex and parietal cortex as well as motor system and frontal eye
fields, is a central station for processing top-down and bottom-up
stimuli and assigning appropriate control to other areas in the brain
(Posner and DiGirolamo, 1998). ACC particularly plays an
essential role in counting Stroop task (Bush et al., 1998; Hayward
et al., 2004; Shin et al., 2001) to resolve competing streams of
information in the selection of sensory inputs and responses. This is
evidenced by connections in the interference network while absent
from neutral network: ACC→MMFG, ACC→SMA, LLIFG→
ACC, LLIMFG→ACC, VIFG→ACC. Because more concentra-
tion is required for interference task, the connections from ACC to
MMFG, which controls the eye movement, are also absent from
neutral task. ACC receives the processed input from frontal gyrus
(VIFG, LLIMFG, LLIFG) and assigns appropriate motor control
to supplementary motor area (SMA). DBN also discovered the
connection RSPL→ACC for both neutral and interference
condition. This is in consistence with earlier findings about the
connection between ACC and parietal cortex (Posner and
DiGirolamo, 1998). However, BN could not find this connection
for interference condition.

Supplementary motor area (SMA) plays an important role in
planning complex and coordinated movements (Kolb and
Whishaw, 1996), and primary motor area (PMA) stores motor
patterns and responds to voluntary activities (Faw, 2002). VIFG
controls voluntary goal directed behavior (Tamm et al., 2002) and a
connection chain (VIFG→LPMA→SMA) for voluntary move-
ment planning were found in both conditions with both BN and
DBN. AFG is participated in memory retrieval and executive



Fig. 5. The neural system learned from fMRI data of counting Stroop task (neutral and interference condition) by BN (top) and DBN (bottom). LPMA: left
primary motor area (BA 4); LIPL: left inferior parietal lobe (BA 40); L(R)LMFG: left (right) lateral middle frontal gyrus (BA 9); L(R)LIFG: left (right) lateral
inferior frontal gyrus (BA 44); L(R)SPL: left (right) superior parietal lobe (BA 7); AFG: anterior frontal gyrus (BA 10); MMFG: medial middle frontal gyrus (BA
8); VIFG: ventral inferior frontal gyrus (BA 47); SMA: supplementary motor area (BA 6); ACC: anterior cingulate cortex (BA 24). A shaded square indicates the
existence of a connection from the region in the row (time t) to the region of column (time t+1).
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function and LMFG is responsible for the selection of behavior
based on the short term memory, in this case, solving conflict, and
LIFG is in charge of phonemic decisions (Price, 2000). Both BN
and DBN found similar connectivity structures: AFG→RLMFG
exists for both neutral and interference conditions, RLMFG→
RLIFG exists only in neutral condition while LLMFG→LLIFG is
present only in interference condition. MMFG is believed to
control eye movements (Faw, 2002) and related to uncertainty
management (Volz et al., 2005). Thus, connections related to
MMFG express different patterns of connectivity under conflicting
situations. In neutral condition, connection SMA→MMFG exists
while more involvement of MMFG is found in interference con-
dition such as LPMA→MMFG, LLMFG→MMFG→LLIFG, and
MMFG→RLMFG. In addition, DBN discovered an important
connection between AFG andMMFG for both conditions, which are
missing from networks derived by BN.

The above areas in frontal lobe receive inputs from parietal lobe
which usually performs functions of processing and discriminating
of sensory inputs. However, the connectivity between frontal gyrus
and parietal lobe were different for neutral and interference con-



Fig. 6. The neural systems learned from fMRI data of counting Stroop task
for neutral and interference conditions by DBN with their connection
strengths shown. The rows and columns in DBN represent the regions in
time t and t+1, respectively. Same abbreviations for brain regions are used
as in Fig. 5.
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ditions. Both BN and DBN found common connections AFG→
RSPL→RLMFG and LIPL→MMFG in both neutral and inter-
ference conditions. In addition, DBN found new connections
between frontal gyrus and parietal lobe common to both interference
and neutral conditions: LIPL→RLMFG and RSPL→VIFG.
Besides, the structure derived by DBN shows an important and
specific language pathway (LIPL→LLMFG→LLIFG) in the
interference counting task for phonetic and semantic analysis and
decision. The connections RSPL→LLIFG andMMFG→LSPL are
also absent from the neutral condition.Meanwhile, RSPL→RLIFG,
LIPL→RLIFG, and RSPL→MMFG only exist in neutral network,
which perform a compensatory function in the absence of language
pathway to visualize the symbols instead of reading, or automatic
speech in right hemisphere (Vanlancker et al., 2003).

Discussion

We proposed DBN to derive effective connectivity of activated
brain regions in fMRI experiments. A structure learning algorithm
based on MCMC method was introduced to search for the best
connectivity structure predicted from data. The accuracy and the
robustness of the approach were evaluated on synthetic data
emulating true fMRI time-series characteristics. The performance
was comparable with GCM in a linearly connected network. The
discovered connectivity structures on fMRI data obtained on silent
reading and counting Stroop tasks were consistent with the
previous literature and showed improvement over those found by
BN.

Confirmatory techniques of effective connectivity analysis such
as SEM and DCM are only useful when a prior connectivity model
is available, so they are not suitable for complex cognitive tasks or
functional integration studies for which such prior models of
connectivity are unavailable. Bayesian networks in contrast are
able to derive the optimal connectivity structure from fMRI data in
an exploratory manner without any knowledge of the structure.
Moreover, BN and DBN are able to characterize the effective
connectivity among brain regions in a complete statistical sense
compared to linear VAR models assumed by GCM or second-order
connectivity by SEM.

Dynamic Bayesian networks (DBN) are capable of learning the
structure more accurately as they explicitly take into account the
temporal characteristics of fMRI time-series by using a Markov
chain. Our method found temporal and causal relationships among
different brain regions more accurately in experiments with real
fMRI data. The intrinsic equivalence property of BN results in a
loss of information about edge directions because several network
structures with the same skeleton but different edge directions can
have the same marginal likelihood. Dynamic BN avoids the
ambiguity of edge directions by explicitly taking into account the
temporal relationships among brain regions in consecutive brain
scans. The directions of edges in the DBN framework correctly
represent information flow of brain function; for example, if there
is a causal relationship from node A to node B, DBN represents
this relationship with the existence of an edge A(t)→B(t+1) and
the absence of an edge B(t+1)→A(t) where A(t) and A(t+1)
denote the node A in layers representing time instances t and t+1,
respectively, in the transition network.

Since the structure of BN must satisfy acyclic constraint,
recurrent networks of brain connectivity are impossible. As
feedback is an essential feature of biological systems, this is a
limitation of BN for modelling brain connectivity. However, DBN
is capable of modelling recurrent connections; for example, a
recurrent network with three causal relationships, say A→B,
B→C, and C→A, is represented by the existence of three edges A
(t)→B(t+1), B(t)→C(t+1), and C(t)→A(t+1) in the transition
network. Similarly, a direct feedback loop with two nodes can be
represented by edges A(t)→B(t+1) and B(t)→A(t+1).

There are some limitations of connectivity patterns derived by
the present method. Although intra-scan connectivity is possible
due to low temporal sampling in fMRI, the present approach
cannot take into account the instantaneous interactions. Hemody-
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namic characteristics of the brain are complex, for example,
different orders (delay) of connections among regions, and higher-
order DBN are required to handle such effects. Instead of simple
concatenation of time-series from different subjects together, the
inter-subject variability of brain connectivity in a group study
could be better treated. The present approach assumes time-
invariant connectivity among brain regions while empirical
evidences suggest that the interscan connectivity between brain
areas vary during scanning. How to overcome the above limitation
of the present approach remains as future of this research.

Because of large complexity of human brain networks, func-
tional integration research remains an important area of brain
research. The complete validation of effective connectivity models
derived from exploratory methods is difficult. We attempted to
validate our method with synthetic data and justified the networks
derived on real fMRI data with the aid of previous literature. In
experiments, DBN showedmore promise and accuracy in estimating
connectivity structure than earlier methods as it takes into
consideration of temporal and causal relationships among brain
regions in higher-order statistical sense. We have shown with
experiments the robustness of our method to characteristics of fMRI
data such as sampling interval, hemodynamic noise, and scanner
noise. In addition, we studied the variability of HRF on the accuracy
of networks derived.

Whenever prior information about the functional structure is
available, taking a hybrid of confirmatory and exploratory tech-
niques should improve the accuracy of the connectivity pattern and
render efficient algorithms for deriving connectivity. Though
exploratory techniques of deriving connectivity patterns could open
a new way of looking at brain functions, due care should be taken
into account when interpreting such connectivity patterns. The
explored structures from fMRI data could be helpful in distinguish-
ing brain functions of different groups of subjects, such as healthy
controls and patients.
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