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We propose to use fuzzy c-means clustering with contextual modeling on features extracted from fMRI

data for detection of brain activation. Five discriminating features are extracted from fMRI data by using

a sequence of temporal-sliding-windows. Fuzzy membership maps of individual subjects obtained

through clustering with spatial regularization is capable of taking into account both hemodynamic

variability and contextual information of brain activation. The present method outperforms statistical

parametric mapping (SPM) approach on experiments with synthetic fMRI data contaminated by both

independent and correlated noise. Performance on real fMRI data are comparable to those obtained

with SPM.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Functional magnetic resonance imaging (fMRI) is a non-
invasive imaging modality measuring functional activity of the
brain in vivo both spatially and temporally. fMRI signal results due
to the changes of blood-oxygenation-level-dependent (BOLD)
contrast, caused by the increase in blood oxygenation following
neuronal activity. Detection of the changes of fMRI signal is non-
trivial as BOLD signal change due to an input stimuli is very
subtle, ranging from 1–5% on a 1.5 T scanner [20]. Furthermore,
various noise and artifacts such as motion, electronic, physical,
and physiological processes, significantly confound fMRI signal.
Therefore, techniques analyzing fMRI signals should be insensitive
to uncertainties and randomness of interference signals.

Methods to detect activated voxels from fMRI data fall into two
categories: hypothesis-driven and data-driven methods. Statisti-
cal parametric mapping (SPM) [11] is a widely used hypothesis-
driven method assuming a general linear model for fMR signal
with a specific noise structure. It is voxel-based and tests the
hypothesis about fMR time-series response on the stimuli by
construction and assessment of spatially extended statistical
processes based on Gaussian random fields (GRF). However, the
actual relationship between the change of fMR signal and the
stimuli presentation is nonlinear [29]; and the hemodynamic
ll rights reserved.
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response function (HRF) varies spatially and among subjects
[24,33]. Moreover, the structure of noise in fMRI is not well
understood and remains a contentious subject [7].

Data-driven methods do not make any assumptions on
hemodynamic response and are considered more appropriate
and powerful for fMRI analysis, especially when unknown or
complex differential responses are expected [18]. Data-driven
approaches can be broadly classified into transformation-based or
clustering-based methods. Principle component analysis (PCA) [3]
and independent component analysis (ICA) [2] transform original
high-dimensional fMRI data into a low-dimensional space to
separate brain activation and various noise sources. The ICA
enables recovery of underlying task-related signals from other
components such as artifacts and noise by decomposing fMRI data
spatially [16] and temporally [6] in an exploratory manner or with
stimulus as constraints [14,15]. Clustering techniques, such as
self-organizing maps [13,19] and fuzzy clustering [5,9], attempt to
classify fMR time-series of the brain into several patterns
according to temporal similarity. Data-driven methods usually
interpret the contents of one class or component as activations
but how signals are divided into classes is difficult to ascertain or
comprehend; a few classes related to activation could have
physiological interpretation but interpretations of others are
unknown. Other data-driven techniques for fMRI analysis include
multi-resolution methods such as wavelet analysis [12].

Besides the activation measured at each brain voxel, fMRI
carries contextual information as neighboring voxels often have
similar characteristics and belong to the same class. Gaussian
smoothing is often applied to enhance signal to noise ratio (SNR)
before statistical analysis, accounting for spatial dependency
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implicitly. This leads to overly smoothed images and a loss of high
frequency information. Markov random fields (MRF) [27,25,10]
and conditional random fields (CRF) [30] have been attempted to
incorporate spatial and temporal correlations explicitly for the
detection of brain activation. MRF based on mixture models with
spatial regularization has been proposed for fMRI segmentation
[32]. Autoregressive spatiotemporal models has also been pro-
posed to incorporate tissue-type related noise priors as spatial
constraints in fMRI analysis [33]. The above approaches still suffer
from the assumptions made on structures of HRF and noise, the
validity of such models depends on the extent to which data
satisfy underlying assumptions.

Fuzzy c-means clustering (FCM) has been widely used in image
segmentation, which incorporates fuzziness for the belongingness
of each voxel to particular class or object. Contextual modeling is
handled by a contextual regularized term into the cost function of
FCM: for example, smooth constraints on the bias field of intensity
inhomogeneity correction [21] and a term for immediate neighbor-
hood information for tissue segmentation of anatomical MR images
[1]. Kernelized version of FCM with spatial constraints has been
recently proposed to further enhance the segmentation [8].

The present work is motivated by the need for a technique that
handles the individual variability of hemodynamic responses and
is less vulnerable to noise. In order to achieve this, we extract
fuzzy features from fMR time-series and use unsupervised FCM
with contextual modeling to identify activated voxels. To adapt to
HRF variability across subjects, FCM is applied to each subject
separately assuming no fixed structure for signals and noise. The
cost function of FCM, regularized by spatial context, is adopted to
capture local and neighboring information. Extracting fuzzy
features from time-series reduces computational complexity and
renders the ability to handle noise. FCM with contextual modeling
on novel fuzzy feature space is similar to kernelized FCM on
original fMR time-series but the advantage of our approach is that
the kernel is well defined by the new feature space compared to
normal Gaussian or polynomial function. The details of our
approach are described in the next section. In the experiment
and result section, the performance of the present approach is
illustrated with functional activation detected on individual and
group study on synthetic as well as on real fMRI data.
2. Method

Our method consists of two steps: (1) extracting fuzzy features
from raw fMR time-series by temporal-sliding-windows (TSW);
(2) FCM clustering with contextual constraints on the feature
space.

2.1. Extracting features

Different brain voxels have different hemodynamic character-
istics, for example, the time to reach the peak intensity of an
activated voxels. We move a sequence of TSW over the time-series
of a voxel to derive fuzzy features discriminating activated and
non-activated voxels under each experimental condition. These
features are derived independent of shape, magnitude, and delay
of HRF. Let C : O�Y! Y be a functional MR image where O �
N3 denotes three-dimensional spatial domain of brain voxels, Y ¼
f1;2; . . . ;ng indexes n number of 3D scans taken during the
experiment. Let Y ¼ fyi;t : i 2 O, t 2 Y; yi;t 2 Qg be the 4D fMRI data
where Q denotes the range of image intensities and yi;t denotes
the intensity of voxel i at time t.

Consider an experiment with only one condition, denoted by X,
for notational simplicity; the technique of feature extraction is
easily extended for fMR experiments involving several conditions
[37]. The condition X is presented with the reference (resting)
state alternatively for P times in a single run while n 3D brain
scans are taken. Each block of condition X is denoted by
Bp; p ¼ 1;2; . . . ; P. The block Bp lasts for a duration of length lp
from the beginning time denoted as bp. The above notation
represents a general paradigm design which applies to both block
and event-related designs. A sequence of TSW for the condition X

is constructed from fMR time-series as follows:
(1)
 Create a sequence of P number of windows denoted by
W ¼ fWp : p ¼ 1;2; . . . ; Pg, one window Wp for each condition
block Bp . The length of window Wp is denoted by wp, and let
wp ¼ lp. The initial starting point of window Wp is thus given
by bp.
(2)
 Shift the sequence of windows W temporally forward
by a sliding time interval s simultaneously, resulting
in a new sequence of windows denoted by WðsÞ ¼ fWpðsÞ :
s ¼ 0;1; . . . ; S; p ¼ 1;2; . . . ; Pg. Depending on different inter-
scan time, the maximum sliding time interval S varies: S ¼

32=RT (seconds) based on the fact that the total length of HRF
is approximately 32 s. Thus, the starting and ending time of
window WpðsÞ is bp þ s and bp þ sþwp � 1; we denote them
by Tp;1ðsÞ and Tp;2ðsÞ, respectively, for notational simplicity.
(3)
 Calculate average intensity Apði; sÞ of each voxel i for each
window WpðsÞ, s ¼ 0;1; . . . ; S as

Apði; sÞ ¼

P ~Tp;2ðsÞ
t¼Tp;1ðsÞ

yi;t

~Tp;2ðsÞ � Tp;1ðsÞ
(1)

where ~Tp;2ðsÞ ¼ minfn; Tp;2ðsÞg.
Thus, we observe a curve ApðiÞ ¼ fApði; sÞ : s ¼ 0;1; . . . ; Sg for each
voxel i of each block Bp, whose shape is highly discriminative
between activated and non-activated voxels. We refer it as quasi-

hemodynamic curve (QHC) because it represents the HRF derived
from the time-series in a data-driven manner. Five fuzzy
discriminating features Fp

kðiÞ, k ¼ 1;2; . . . ;5, are extracted from
QHC for each block Bp at each voxel i as follows:
(1)
 Area under curve ratio for QHC:

Fp
1ðiÞ ¼

P ~wp

s¼0 Apði; sÞ

ðmaxs Apði; sÞ �mins Apði; sÞÞ � ~wp
(2)

where ~wp ¼minfwp; Sg.

(2)
 Area difference ratio for QHC:

Fp
2ðiÞ ¼

P ~wp

s¼0 Apði; sÞPS
s¼ ~wpþ1 Apði; sÞ

(3)
(3)
 Correlation between QHC ApðiÞ and the standard QHC, SAp:

Fp
3ðiÞ ¼

P ~wp

s¼0 ðApði; sÞ � Apði; sÞÞðSAp � SApÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ~wp

s¼0 ðApði; sÞ � Apði; sÞÞ
2P ~wp

s¼0 ðSAp � SApÞ
2

q (4)

where SAp ¼ fSApðsÞ ¼ �ðs� ~wp=2Þ2 : s ¼ 0;1; . . . ; ~wpg.

(4)
 Time ratio at peak amplitudes of QHC:

Fp
4ðiÞ ¼ arg

s2½0; ~wp �

max
s

Apði; sÞ= ~wp (5)
(5)
 Time ratio at lowest amplitude for QHC:

Fp
5ðiÞ ¼ arg

s2½0; ~wp �

min
s

Apði; sÞ= ~wp (6)

Two QHC were normalized to within ½0;1� before correlation
computation in feature 3 for easy comparison among voxels.
Since the shapes of QHC of activated and non-activated voxels
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are usually different as seen later, the above five features
could be significantly discriminating.
The above five features of each block are sum up over all blocks
as

FkðiÞ ¼
XP

p¼1

Fp
kðiÞ=P, (7)

which leads to a robust 5D feature space fFkðiÞ : k ¼ 1;2; . . . ;5; i 2

Og at each voxel, which fuzzy features are less vulnerable to noise
or changes in hemodynamic response. Note that we assume the
duration of each block lppS in the above definitions. For cases like
lp4S, we should apply the opposite settings, i.e., use window
length wp ¼ 32=RT and the maximum sliding time for each
window Sp ¼ lp. The properties of the resulting curve is similar to
QHC and the same features could be extracted.

2.2. FCM clustering with contextual constraints

Based on feature space developed in the previous section, we
use FCM with spatial constraints to classify voxels into activated
and non-activated classes. This scheme is able to adapt to the
hemodynamic variability across subjects when unsupervised FCM
is applied on each subject separately. FCM is able to provide (1)
the strength of activation of each voxel to each condition, (2) a
clear classification of voxels by comparing membership values,
and (3) a rule-base for interpretation of activation patterns. For a
given condition X, each voxel i 2 O has a corresponding vector of
five features FðiÞ ¼ fFkðiÞ : k ¼ 1;2; . . . ;5g. We use FCM on these
features to classify voxels into two classes: activated or non-
activated class.

The objective function of standard FCM partitioning the feature
set fFðiÞ : i 2 Og into C clusters is given by

Jm ¼
XC

c¼1

X
i2O

uðc; iÞmkFðiÞ � VðcÞk2 (8)

subject to constraints:

uðc; iÞ 2 ½0;1�;
XC

c¼1

uðc; iÞ ¼ 1; 8i and

0o
X
i2O

uðc; iÞojOj; 8c (9)

where uðc; iÞ is the fuzzy membership value of voxel i belonging to
class c, VðcÞ is the feature vector of the centroid of class c, k � k
stands for Euclidean norm, and parameter m is the weighting
exponent of fuzzy memberships.

Standard FCM fails to segment images corrupted by noise,
outliers, and other artifacts [8]. The robustness of FCM to noise
can be increased by directly modifying the objective function in
Eq. (8) to incorporate contextual information [1]:

Jm ¼
XC

c¼1

X
i2O

uðc; iÞmkFðiÞ � VðcÞk2

þ
a
jNðiÞj

XC

c¼1

X
i2O

uðc; iÞm
X

r2NðiÞ

kFðrÞ � VðcÞk2 (10)

where NðiÞ stands for the set of neighbors around voxels i and
jNðiÞj is the number of valid voxels in the defined neighborhood.
The parameter a controls the effect of regularization from
neighboring voxels. The clusters are obtained by solving

min Jm s:t:
XC

c¼1

uðc; iÞ ¼ 1; 8i (11)
With this minimization, high membership values are given to
voxels nearer to the centroid and low membership values are
given to those far away from the centroid. The Lagrange multiplier
is adopted to include the constraints into optimization and the
augmented object function becomes

J0m ¼ Jm þ l 1�
XC

c¼1

uðc; iÞ

 !
(12)

This problem can be solved by taking the derivatives of J0M with
uðc; iÞ and applying the constraints. The necessary conditions for
the local minimum are

uðc; iÞ ¼

kFðiÞ � VðcÞk2 þ
a
jNðiÞj

P
r2NðiÞ kFðrÞ � VðcÞk2

� ��1=ðm�1Þ

PC
c¼1 kFðiÞ � VðcÞk2 þ

a
jNðiÞj

P
r2NðiÞ kFðrÞ � VðcÞk2

� ��1=ðm�1Þ

(13)

VðcÞ ¼

P
i2Ouðc; iÞm FðiÞ þ

a
jNðiÞj

P
r2NðiÞ FðrÞ

� �
ð1þ aÞ

P
i2O uðc; iÞm

(14)

FCM clustering with contextual modeling can be achieved in the
following iterative updating procedure:
(1)
 For a fixed number of C, set initial cluster centroid VðcÞ and
choose �40 to a very small value.
(2)
 Calculate the fuzzy membership values of each voxel to all
clusters by Eq. (13).
(3)
 Update the centroids based on new membership values by
Eq. (14).
(3)
 Repeat steps 2 and 3 until the average absolute difference of
centroids obtained in consecutive rounds are less than �.
The final fuzzy membership map for both activated and non-
activated voxels is able to provide a concrete segmentation of
activated and non-activated brain regions from fMRI. The voxel is
assigned to the class with highest fuzzy membership value.
3. Experiments and results

We demonstrate our approach on both synthetic and real fMRI
data. A comparison between the results produced by our FCM
clustering approach and SPM is given.

3.1. Synthetic data

A 2D synthetic functional dataset consisting of six cycles (with
eight ON and eight OFF scans, TR ¼ 2 s, n ¼ 96) was simulated.
The response of activated voxels was generated by convolving a
box-car time-series with HRF, using a mixture of two gamma
functions, while non-activated voxels were kept constant at zero
amplitude. The ground truth of activation pattern is shown
in Fig. 1a. Synthetic images with different levels of independent
noise (Gaussian) and spatially correlated noise (by averaging the
neighboring i.i.d. Gaussian noise) were tested. Five synthetic time-
series were simulated based on different HRF by varying its
parameters: the delay of response and undershoot relative to
onset, the dispersion of response and undershoot, ratio of
response to undershoot, and the total length of HRF function.
Fig. 1b illustrates HRF function at different parameter values. The
purpose is to test the vulnerability of FCM and SPM to the
variability of HRF across subjects and their robustness against
noise.
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Fig. 1. Generation of synthetic fMR data: (a) true activation region; and (b) example of three HRFs of the synthetic time-series of different subjects.
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SPM analysis for both real and synthetic datasets used the
standard procedure implemented in SPM2 [31]. A 6 mm 3D
Gaussian filter was applied to increase the SNR before statistical
analysis. Canonical hemodynamic response was used as basis
function for statistical modeling. Confounding effects of fluctua-
tions of global mean were removed by proportional scaling, and
low-frequency noise was removed with a high pass temporal filter
(128 s) applied to the fMRI time-series at each voxel. Specific
effects were tested by applying appropriate linear contrasts and
t-statistical parametric maps were used to assess significant
hemodynamic changes. We report activations in voxels below a
threshold of po0:05, which were corrected for multiple compar-
isons using false discovery rate (FDR) [4].

FCM was performed on original (unsmoothed) time-series.
Features were first extracted using a sequence of TSW of width
wp ¼ 8. The parameter settings were: a ¼ 3, m ¼ 2, � ¼ 0:001. We
empirically determined the optimal value of a. A six-voxel
neighborhood was used for contextual modeling of the target
voxel. Initial cluster centroids were set to the vector of voxels with
the highest and lowest correlation with input stimulus convolved
with HRF. Extracted features were individually scaled to ½0;1�
before applying FCM such that each feature plays an equal weight.

Various levels of noise in both independent and correlated
cases were tested: SNR ¼ f2:0;1:2;0:45g. The performance of FCM
for functional activation detection on a group of five synthetic fMR
time-series was compared to SPM and our previous work fuzzy
feature modeling (FFM) [37] by plotting the ROC curves as shown
in Fig. 2. As seen, present FCM approach outperforms SPM for data
with both independent and correlated noise, especially at high
level of correlated noise frequently embedded inside real fMRI
data. The previous FFM approach does not incorporate contextual
information and thus suffers from high level of independent noise,
although it performs better than contextual FCM in other cases. It
is suspected that the fuzzy feature model built in FFM is able to
classify nonlinear functions by incremental learning while current
version of FCM, though can incorporate contextual information,
may lack the ability of adaptive learning. On the other hand,
thresholding is required in FFM whereas contextual FCM auto-
matically identify the activated and non-activated voxels by
winner-takes-all rule.

The final segmentation produced by FCM and SPM (t-contrast
with FDR po0:05) is shown in Fig. 3. As seen, our FCM approach is
able to discover more accurate and detailed activation than SPM,
especially in high correlated noise case. The elegance of FCM is
that no thresholding is involved; activated voxels are automati-
cally identified by comparing the fuzzy membership values of the
classes, i.e., with winner-takes-all. For SPM, thresholding methods
should be catered to correct for multiple comparisons. Family-
wise-error (FWE) thresholding method usually produces more
conserved results than false-discovery-rate (FDR) method. In this
experiment, we found that FDR is more appropriate for images
with correlated noise while FWE is more appropriate for images
with independent noise. This is also seen by thresholded images
in Figs. 3 and 4. Here, the results thresholded by FDR are reported.
SPM uses a fixed HRF and therefore cannot adapt to HRF
variability. Experiments showed that SPM suffered more from
correlated noise than Gaussian noise whereas contextual FCM
performs much better under the case of correlated noise. Overly
smoothing in SPM leads to loss of high-frequency information and
the assumptions of HRF and noise prevent it from detecting highly
variable activation. Moreover, the resulting centroids of activated
and non-activated classes by contextual FCM correspond well to
various parameters of HRF during generation of synthetic fMR
data, which means that the extracted features are capable of
capturing the properties of HRF.
3.2. Real data

3.2.1. Visual task

A set of real fMRI data obtained from experiments with a visual
task were analyzed, see Rajapakse et al. [24] for further details
about this data. For SPM analysis, all functional images were first
corrected for movement artifacts, resampled, and smoothed with
a 3D Gaussian filter having FWHM ¼ 4:47 mm. T-contrast is used
for statistical analysis in SPM2 with canonical HRF as basis
function. Voxels with po0:05 corrected using FWE is determined
to be activated. For FCM approach, the same parameter settings
were used as for synthetic data on original unsmoothed images.
Features are first extracted using a sequence of TSW of width
wp ¼ 4.

In order to illustrate the usefulness of the extracted 5D feature
space, QHC were derived. Although QHC varies across subjects,
brain regions and tasks, the characteristics of QHC often
comprises similar discriminating features. This is illustrated in
Fig. 5 showing typical QHC for an activated voxel (top) and
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Fig. 2. ROC curves for detecting activation on a group study of five synthetic time-series with different HRF by SPM, FFM, and FCM methods. Different levels of

(a) independent and (b) correlated noise were tested: row 1 SNR ¼ 2:0, row 2 SNR ¼ 1:2, and row 3 SNR ¼ 0:45.

J. Zhou, J.C. Rajapakse / Neurocomputing 71 (2008) 3184–31923188
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Fig. 3. Comparison of detected activation by SPM and FCM from a group study of synthetic data at different levels of independent noise (a) and (b) and correlated noise

(c) and (d). Row 1: SNR ¼ 2:0, row 2: SNR ¼ 1:2, and row 3: SNR ¼ 0:45.

Fig. 4. The detected activation by thresholding with family-wise-error (FWE) in SPM from a group study of synthetic data at different levels of independent noise (first row)

and correlated noise (second row). (a) SNR ¼ 2:0, (b) SNR ¼ 1:2, and (c) SNR ¼ 0:45.

J. Zhou, J.C. Rajapakse / Neurocomputing 71 (2008) 3184–3192 3189
non-activated voxel (bottom) in real fMRI data of visual (a) and
motor (b) task, respectively. Despite the differences between QHC
of two tasks, evidently, the activated and non-activated voxels
have quite different QHC shapes of brain regions and hence
common discriminating features could still be discovered with
lower degrees of uncertainty.
Fig. 6 shows the detected activated regions for visual task on
three axial slices of one subject by both SPM and FCM approaches.
Since the ground truth of brain activation is unknown, it is
difficult to compare activation patterns quantitatively, but still
activation was found in expected regions of visual cortex for both
approaches. In addition, the activation found by FCM exactly
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Fig. 5. QHC extracted from fMRI data of visual (a) and motor (b) tasks for activated (top) and non-activated (bottom) voxels, respectively.

J. Zhou, J.C. Rajapakse / Neurocomputing 71 (2008) 3184–31923190
follows the curvature of gray tissue matter as seen while the
activation produced by SPM does not.
3.2.2. Counting Stroop task

FMRI data in a counting Stroop task investigating the
performance of females with fragile X-syndrome on the cognitive
interference processing compared to normal subjects were
analyzed. There are two conditions in the task: neutral and
interference, see Tamm et al. [28] for details about the task and
data collection. Standard SPM analysis was performed based on
HRF with time and derivatives and thresholded by FDR (po0:05).
The same parameter settings used in contextual FCM approach on
synthetic data experiments were used on this data. Features are
first extracted using a sequence of TSW of width equals to 15. A
female patient is examined for activated regions in both neutral
and interference counting Stroop condition. Fig. 7 shows the
results by SPM and FCM for each condition, respectively. As seen,
their results are quite similar. The findings are consistent with
previous literature [28,35], unique activation were found in left
inferior/middle frontal gyrus (BA 45, 46), left supplementary
motor area (BA 6) and right middle/inferior frontal gyrus (BA 9/47)
for interference condition, while left and right putamen, left
hippocampus, left parahippocampal gyrus, right superior tempor-
al gyrus (BA 22) and right posterior insula were activated in
neutral condition.
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Fig. 6. Detected activation on three axial slices by SPM (top) and FCM (bottom) for the visual task.

Fig. 7. Detected activation on selected axial slices by (a) SPM and (b) FCM for counting Stroop task on a female X Syndrome patient: neutral condition (top) and interference

condition (bottom).

J. Zhou, J.C. Rajapakse / Neurocomputing 71 (2008) 3184–3192 3191
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4. Conclusion

Using a novel fuzzy feature extraction method, we are able to
convert 4D fMRI dataset into a simpler and robust feature space
for detection of functional activation. Unsupervised fuzzy c-means
clustering with contextual modeling was applied to the feature
space to detect brain activation. Experiments on both synthetic
and real fMRI data showed that our FCM approach is less
vulnerable to both independent and correlated noise incorporat-
ing neighborhood information of brain activation. Activated and
non-activated voxels for the condition of interest were discovered
simultaneously and explicitly. A group study on synthetic fMRI
data generated by different HRF further illustrates that FCM is
capable of handling HRF variability across subjects. Our future
work will include incorporating the variability of brain tissues
[23] and structures [36] into activation detection by multi-
modality image fusion [22].
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