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ABSTRACT

Background: We sought to describe the antemortem clinical and neuroimaging features among pa-
tients with frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP).

Methods: Subjects were recruited from a consecutive series of patients with a primary neuro-
pathologic diagnosis of FTLD-TDP and antemortem MRI. Twenty-eight patients met entry criteria:
9 with type 1, 5 with type 2, and 10 with type 3 FTLD-TDP. Four patients had too sparse FTLD-
TDP pathology to be subtyped. Clinical, neuropsychological, and neuroimaging features of these
cases were reviewed. Voxel-based morphometry was used to assess regional gray matter atro-
phy in relation to a group of 50 cognitively normal control subjects.

Results: Clinical diagnosis varied between the groups: semantic dementia was only associated
with type 1 pathology, whereas progressive nonfluent aphasia and corticobasal syndrome were
only associated with type 3. Behavioral variant frontotemporal dementia and frontotemporal de-
mentia with motor neuron disease were seen in type 2 or type 3 pathology. The neuroimaging
analysis revealed distinct patterns of atrophy between the pathologic subtypes: type 1 was asso-
ciated with asymmetric anterior temporal lobe atrophy (either left- or right-predominant) with
involvement also of the orbitofrontal lobes and insulae; type 2 with relatively symmetric atrophy
of the medial temporal, medial prefrontal, and orbitofrontal-insular cortices; and type 3 with
asymmetric atrophy (either left- or right-predominant) involving more dorsal areas including fron-
tal, temporal, and inferior parietal cortices as well as striatum and thalamus. No significant atro-
phy was seen among patients with too sparse pathology to be subtyped.

Conclusions: FTLD-TDP subtypes have distinct clinical and neuroimaging features, highlighting the
relevance of FTLD-TDP subtyping to clinicopathologic correlation. Neurology® 2010;75:2204–2211

GLOSSARY
bvFTD � behavioral variant frontotemporal dementia; CBS � corticobasal syndrome; CDR � Clinical Dementia Rating;
FDR � false discovery rate; FTD � frontotemporal dementia; FTLD � frontotemporal lobar degeneration; FTLD-TDP �
frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions; FUS � fused in sarcoma; MMSE � Mini-Mental
State Examination; MND � motor neuron disease; PNFA � progressive nonfluent aphasia; TDP-43 � TAR DNA-binding
protein of 43 kDa; UCSF � University of California, San Francisco; VBM � voxel-based morphometry.

Frontotemporal lobar degeneration (FTLD) is a genetically and pathologically heterogeneous neu-
rodegenerative disorder presenting with either behavioral or language impairment.1 Studies have
demonstrated 3 major FTLD molecular classes, characterized by abnormal cellular inclusions con-
taining either tau, TAR DNA-binding protein of 43 kDa (TDP-43), or fused in sarcoma (FUS)
protein,1 with TDP-43 pathology being the most common.2 FTLD with tau-immunoreactive in-
clusions (FTLD-tau) has long been associated with diverse pathologic subtypes, including Pick
disease, corticobasal degeneration, progressive supranuclear palsy, and others, all defined by recog-
nizable neuronal and glial pathomorphologies.1,3 Recent work has demonstrated a similar diversity
within the FTLD-TDP spectrum with 4 subtypes currently recognized.4-7

Correlations have begun to emerge between frontotemporal dementia (FTD) clinical syndromes
and underlying TDP-43 subtypes.2,8-10 In this study, we grouped a consecutive series of patients
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with FTLD-TDP according to pathologic sub-
type and examined the associated antemortem
clinical, neuropsychological, and neuroimaging
features. We hypothesized that 1) type 1 would
be associated with semantic dementia, including
patients with both left- and right-predominant
temporal polar disease, and would show corre-
sponding asymmetric atrophy within a temporal
pole network for semantic and emotional mean-
ing, 2) type 2 would be predominantly associ-
ated with behavioral variant FTD (bvFTD),
with or without motor neuron disease (MND),
and would show frontoinsular and medial fron-
tal atrophy, and 3) type 3 would include most
patients with PNFA or CBS and feature more
dorsal frontoparietal and dorsal insular atrophy.

METHODS Subjects. Subjects were recruited from a consecu-
tive series of patients attending the Memory and Aging Center at
the University of California, San Francisco (UCSF) with a primary
neuropathologic diagnosis of FTLD-TDP and an antemortem
volumetric MRI brain scan performed on a 1.5-T magnetic reso-
nance scanner. Because comorbid Alzheimer disease–related and
Lewy body pathologies are common in older subjects, the presence
of one or more of these comorbidities did not constitute an exclu-
sion criterion. A control group of 50 age- and gender-matched cog-
nitively normal subjects was also included: 28 male subjects, mean
age at scan of 61.4 years (SD � 7.8).

Standard protocol approvals, registrations, and patient
consents. Ethical approval for the study was obtained from
UCSF Committee on Human Research. Written research con-
sent was obtained from all patients prior to study participation.

Clinical and neuropsychological assessment. All patients
underwent a standard clinical assessment including Mini-Mental
State Examination (MMSE, 11) and the Clinical Dementia Rating
(CDR, 12). Neuropsychometry was also performed including as-
sessment of naming (Abbreviated Boston Naming Test, 13), verbal
memory (California Verbal Learning Test–short form, 14), visuo-
spatial skills and visual memory (modified Rey Figure, copy and
delay score, 15), and executive function (Trail Making Test, 16 and
Design Fluency, 17, as well as verbal fluency and backwards digit
span). The groups were compared statistically using the nonpara-
metric Kruskal-Wallis test with post hoc pairwise analysis
(STATA10©, Stata Corp., College Station, TX).

Brain imaging. Structural MRI was performed with a 1.5-T
Magneton VISION system (Siemens Inc., Iselin, NJ). A volu-
metric magnetization-prepared rapid gradient echo MRI (repeti-
tion time, 10 msec; echo time, 4 msec; inversion time, 300 msec)
was used to obtain a T1-weighted image of the entire brain (15°
flip angle, coronal orientation perpendicular to the double spin
echo sequence, 1.0 � 1.0 mm2 in-plane resolution of 1.5-mm
slab thickness).

Initially, cortical and subcortical volumes were generated using
the Freesurfer analysis suite (http://surfer.nmr.mgh.harvard.edu/).
This allowed a left/right asymmetry ratio to be calculated by divid-
ing the total left hemisphere volumes by the right hemisphere vol-
umes to provide a measure of how asymmetric the atrophy was in
each patient. Voxel-based morphometry (VBM) was performed us-

ing SPM5 software (http://www.fil.ion.ucl.ac.uk/spm) and the
DARTEL toolbox with default settings for all parameters.18 Voxel
gray matter intensity, V, was modeled as a function of group, and
subject age, gender, and total intracranial volume (calculated
within SPM5) were included as nuisance covariates. Maps show-
ing significant differences between the groups were generated,
correcting for multiple comparisons by thresholding the images
of t statistics to control the false discovery rate (FDR) at a 0.001
significance level. Statistical parametric maps were displayed as
overlays on a study-specific template, created by warping all na-
tive space whole-brain images to the final DARTEL template
and calculating the average of the warped brain images.

Neuropathologic assessment. All patients underwent a
comprehensive neuropathologic assessment as previously de-
scribed.19,20 Briefly, fixation protocols varied depending on the
site and date of autopsy. Although all patients were clinically
evaluated at UCSF, autopsies were divided between UCSF and
the University of Pennsylvania. For all brains autopsied at the
University of Pennsylvania and some autopsied at UCSF, whole
hemispheres were immersion fixed in 10% neutral buffered for-
malin for at least 1 week. Additional brains autopsied at UCSF
were freshly cut into 8- to 10-mm-thick whole-brain coronal
slabs. These slabs were alternately fixed, in freshly made 4%
paraformaldehyde for 72 hours, or rapidly frozen. Tissue blocks
covering neocortical, limbic, subcortical, and brainstem regions
were dissected following consensus guidelines for the standard-
ized assessment of dementia neuropathology,21 and basic and im-
munohistochemical stains were applied. Immunohistochemistry
was performed using antibodies to ubiquitin (antirabbit,
1:1,000, DAKO North America, Carpinteria, CA), TDP43 (an-
tirabbit, 1:2,000, Proteintech Group, Chicago, IL), hyperphos-
phorylated tau (CP-13 antibody, courtesy of P. Davies),
�-amyloid (antimouse, 1:250, Millipore, Billerica, MA), glial
fibrillary acidic protein (antirabbit, 1:250, DAKO North Amer-
ica), �-synuclein (antimouse, 1:1,000, Millipore), �-internexin
(antimouse, 1:200, Invitrogen, Carlsbad, CA), and FUS (anti-
rabbit, 1:200, Sigma-Aldrich, St. Louis, MO). All immunohisto-
chemical runs included positive control sections to exclude
technical factors as a cause of absent immunoreactivity.

Further pathologic subtyping of the patients with FTLD-
TDP was performed. Two closely related nomenclatures have
been put forward for FTLD-TDP subtyping4,5: type 1 Sampathu
(type 2 Mackenzie) is associated with long, TDP-43 immunore-
active, dystrophic neurites but few neuronal cytoplasmic inclu-
sions; type 2 Sampathu (type 3 Mackenzie) is associated with
predominantly granular or stippled neuronal cytoplasmic inclu-
sions in superficial and deep layers; and type 3 Sampathu (type 1
Mackenzie) is associated with crescentic or compact neuronal
cytoplasmic inclusions, abundant short angulated neuropil
threads, and, more variably, neuronal intranuclear inclusions.6,7

Patients with null mutations in progranulin who have come to
autopsy have shown Sampathu type 3 FTLD-TDP.22 A fourth
rare subtype associated with mutations in the valosin-containing
protein gene has also been described.6 For clarity, the Sampathu
scheme is applied throughout the remainder of the article.

RESULTS Twenty-eight patients met entry criteria
and were included in the study (18 men, 10 women)
with a mean age at scan of 62.4 years (SD � 7.9).
Nine patients had type 1 pathology, 5 had type 2, 10
had type 3 (including 2 with known progranulin
mutations), and 4 had FTLD-TDP pathology that
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proved too sparse to be subtyped (table 1). In the
unclassifiable group, TDP-43 pathology took the
form of rare compact, granular, crescentic, or skein-
like neuronal cytoplasmic inclusions, glial cytoplas-
mic inclusions, or short dystrophic neurites in
superficial or deep layers, with some variation be-
tween cases. Anterior cingulate cortex and dentate
gyrus granule cells were consistently sampled and
showed scarce TDP-43 pathology in all unclassifiable

patients, although other frontal and temporal regions
showed some pathology in selected patients.

Clinical diagnosis varied between the groups,
with semantic dementia seen only in FTLD-TDP
type 1, with no other clinical diagnosis made in pa-
tients with this pathology. Although patients with
both left- and right-predominant bitemporal atrophy
all had semantic impairment characteristic of seman-
tic dementia, behavioral symptoms were more con-

Table 1 Clinical, demographic, imaging, and pathologic findings in patients with FTLD-TDP

TDP-43
subtype

Clinical
diagnosis Sex

Age at
onset, y

Disease
duration, y

Left/right
hemisphere
volume ratio

Pathologic/genetic
details

Type 1 SEMD M 53 12.0 1.06 Braak II

SEMD F 62 14.6 1.07 Braak II, mild CAA

SEMD M 44 18.2 1.11 Braak II

SEMD F 64 8.5 1.05 Braak II

SEMD F 60 12.0 0.93 Braak II

SEMD M 68 9.5 0.93 None

SEMD M 63 10.5 0.96 Braak I

SEMD M 62 11.6 0.95 Braak III; Lewy body pathology,
transitional limbic type

SEMD M 52 6.4 0.94 Braak I

Mean (SD) 58.7 (7.5) 11.5 (3.4)

Type 2 FTD-MND M 48 19.1 1.01 Braak III

bvFTD M 50 10.0 1.01 Braak II

bvFTD F 72 3.2 0.99 Braak II

FTD-MND M 56 1.9 0.99 Braak II

FTD-MND M 67 9.2 0.96 Braak III, HS

Mean (SD) 58.6 (10.5) 8.7 (6.8)

Type 3 PNFA F 68 10.3 1.02 Braak II, HS

FTD-MND F 52 11.5 1.01 None

CBS F 57 9.1 1.15 Braak I

CBS M 69 5.8 0.99 Braak IV, NIA/Reagan
intermediate likelihood AD;
progranulin mutation

FTD-MND M 54 5.5 0.98 Braak II

FTD-MND M 50 3.3 0.94 None

PNFA F 50 3.1 0.97 None

bvFTD F 59 10.7 0.98 Braak II

PNFA/CBS F 63 10.0 0.96 Braak II

bvFTD M 45 8.5 0.97 Braak I; progranulin mutation

Mean (SD) 56.7 (8.0) 7.8 (3.1)

Type unspecified FTD-MND M 69 3.1 1.04 Braak II; Lewy body pathology,
brainstem only

FTD-MND M 52 7.3 1.01 Braak II

FTD-MND M 51 6.2 0.99 None

FTD-MND M 47 2.9 0.99 None

Mean (SD) 54.8 (9.7) 4.9 (2.2)

Abbreviations: AD � Alzheimer disease; bvFTD � behavioral variant frontotemporal dementia; CAA � cerebral amyloid
angiopathy; CBS � corticobasal syndrome; FTD � frontotemporal dementia; FTLD-TDP � frontotemporal lobar degenera-
tion with TDP-43 immunoreactive inclusions; HS � hippocampal sclerosis; MND � motor neuron disease; PNFA � progres-
sive nonfluent aphasia; SEMD � semantic dementia; TDP-43 � TAR DNA-binding protein of 43 kDa.
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spicuous in the right-predominant patients and were
often the first manifestations. These patients were
clinically classified as semantic dementia due to the
profound semantic impairment at presentation, al-
though they may have been classified as bvFTD at
some centers if seen earlier in the disease course. Pro-
gressive nonfluent aphasia (PNFA) and corticobasal
syndrome (CBS) were only seen in type 3 pathology,
although both bvFTD and FTD-MND were seen in
type 2 and type 3. All 4 patients in whom the FTLD-
TDP could not be subtyped had clinical FTD-MND
(table 1). Age at onset and disease duration over-
lapped between the subgroups although there was
longer duration in the type 1 subtype compared to
type 3 (p � 0.02) and a trend toward longer dura-
tion compared to type 2 (tables 1 and 2). All groups
contained patients with asymmetric atrophy al-
though type 1 was the most asymmetric (4 patients
with greater right hemisphere atrophy and 5 with

greater left hemisphere involvement): mean hemi-
spheric volume difference was 37.3 (10.9) mL in
type 1, compared to 19.8 (17.7) in type 3 and only
7.1 (6.8) in type 2, in which most patients showed
relatively symmetric atrophy (table 1).

Neuropsychological assessment was consistent
with clinical diagnosis (table 2). Naming was most
affected in type 1 (semantic dementia) and worse
than in the other groups (vs type 2 p � 0.03, vs type
3 p � 0.01, vs unspecified p � 0.02), with worse
performance in those showing left-predominant at-
rophy compared to the right-sided group (table e-1
on the Neurology� Web site at www.neurology.org).
Verbal memory scores were also worse in the type 1
group compared with type 3 (California Verbal
Learning Test recall at 10 minutes, p � 0.009) and
the unspecified group (p � 0.045) with a trend to-
ward worse performance compared to type 2 (p �
0.08). In the type 1 group, performance on verbal

Table 2 Neuropsychological and demographic variables in FTLD-TDP type 1, type 2, type 3, unspecified
group, and controls

Controls TDP type 1 TDP type 2 TDP type 3
TDP
unspecified

No. of subjects 50 9 5 10 4

Male/female 28/22 6/3 4/1 4/6 3/1

Age at scan, y 61.4 (7.8) 63.7 (6.4) 65.2 (9.3) 61.4 (8.2) 58.5 (9.5)

Disease duration at scan, y N/A 5.0 (2.2) 6.6 (5.8) 4.7 (2.5) 3.8 (1.6)

MMSE 29.8 (0.5) 24.8 (1.1)a 26.8 (1.8)a 23.8 (6.9)a 27.0 (2.6)a

CDR total N/A 0.9 (0.8) 1.0 (0.6) 0.9 (0.5) 0.8 (0.4)

CDR sum of boxes N/A 4.1 (3.4) 5.8 (2.4) 4.9 (2.4) 3.0 (2.8)

Abbreviated Boston
Naming Test (/15)

14.6 (0.8) 4.1 (3.8)a,c,d,e 9.2 (3.7)a 11.3 (3.5)a 13.7 (1.5)

Modified Rey Figure (copy
score) (/17)

16.0 (1.1) 16.1 (0.7) 14.6 (2.2) 14.8 (2.3) 16.0 (1.4)

Modified Rey Figure (delay
score) (/17)

12.6 (2.5) 7.2 (5.3)a 9.6 (2.9)a 8.8 (3.9)a,e 14.5 (0.7)

CVLT short form: total
correct in 4 trials (/36)

NT 14.8 (8.2) 18.6 (4.3) 22.8 (6.6) 22.7 (1.2)

CVLT short form: recall at
10 min (/9)

NT 1.1 (2.8)d,e 3.2 (2.6) 6.0 (2.4) 4.3 (2.1)

Trail Making Test B
(correct lines per min)

35.3 (12.9) 24.1 (14.5)a 9.3 (2.8)a,b 19.1 (14.6)a 27.0 (24.4)

Design fluency score
(correct in 1 min)

11.5 (3.2) 8.3 (5.0) 6.0 (4.2)a 7.5 (3.4)a 7.5 (3.5)

Backwards digit span 5.3 (1.2) 5.3 (1.0) 2.8 (0.8)a,b,e 3.6 (1.3)a,b 4.7 (0.6)

Verbal fluency (D words
generated in 1 min)

15.9 (4.4) 7.3 (3.4)a 5.2 (2.0)a,e 6.0 (2.9)a 9.7 (2.9)a

Verbal fluency (animals
generated in 1 min)

22.6 (5.1) 6.3 (4.2)a,d,e 8.2 (5.0)a 11.3 (4.5)a 13.3 (7.6)a

Abbreviations: CDR � Clinical Dementia Rating; CVLT � California Verbal Learning Test; FTLD-TDP � frontotemporal lobar
degeneration with TDP-43 immunoreactive inclusions; MMSE � Mini-Mental State Examination; N/A � not applicable; NT �

not tested.
a p � 0.05 Disease group worse than controls.
b p � 0.05 Worse than type 1.
c p � 0.05 Worse than type 2.
d p � 0.05 Worse than type 3.
e p � 0.05 Worse than unspecified.
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memory tests was worse in the left-sided group com-
pared to right, whereas performance on visual mem-
ory tests was worse in the right-sided group (table
e-1). Executive function was worst in the type 2 pa-
tients with poorer performance on the Trail Making
Test than type 1 (p � 0.04) and a trend to worse
performance than type 3 (p � 0.09).

VBM analysis was performed in both the total
TDP groups and also in subgroups defined by left- or
right-predominant atrophy. Type 1 was associated
with atrophy in the temporal lobes (especially in po-
lar and anterior regions), the amygdalae, hip-
pocampi, orbitofrontal lobes, and insulae (figure 1).
Subgrouping the patients by side of worst atrophy

highlighted the asymmetric nature of the illness,
which can be either left- or right-predominant with a
mirror-image pattern seen in the 2 groups (figure 1).
Significant atrophy in type 2 was identified in medial
and polar temporal lobes, especially on the left, as
well as anterior cingulate, anterior insulae, medial
prefrontal, and orbitofrontal cortices. Although the pat-
tern was relatively symmetric outside of the temporal
lobe, one patient in this group showed left-
predominant atrophy (table 1), which most likely drove
the asymmetric temporal atrophy effect shown in figure
2. Splitting the type 2 group by side of worst atrophy
left only small groups for analysis, and only the left-
sided group showed significantly atrophied regions,

Figure 1 Voxel-based morphometry analysis on gray matter regions in the type 1 group relative to healthy
controls (A) and in the type 1 subgroups with left- and right-sided predominant atrophy (B)

Statistical parametric maps have been thresholded at p � 0.001 after false discovery rate correction over the whole brain
volume and rendered on a study-specific average group T1-weighted MRI template image in DARTEL space. The color bar
(left) indicates the t score. The left hemisphere is shown on the left of each figure.

Figure 2 Voxel-based morphometry analysis on gray matter regions in the type 2 group relative to
healthy controls

Statistical parametric maps have been thresholded at p � 0.001 after false discovery rate correction over the whole brain
volume and rendered on a study-specific average group T1-weighted MRI template image in DARTEL space. The color bar
(left) indicates the t score. The left hemisphere is shown on the left of each figure.
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mostly asymmetric (left greater than right) medial tem-
poral lobe. In type 3, the atrophy showed a more dorsal
pattern, including the inferior, middle, and superior
frontal gyri, anterior, medial, and posterior temporal re-
gions, amygdalae, insulae, anterior cingulate, orbito-
frontal cortex, inferior parietal lobes, striatum, and
thalamus (figure 3). Similar mirror-image patterns were
seen in the subgroups with right- and left-sided pre-
dominant atrophy, although the extent of atrophy in
each group varied, most likely due to differences in sam-
ple size. The unspecified TDP group did not show areas
of significant atrophy at the predetermined statistical
significance threshold.

DISCUSSION Consistent with previous studies,5-9

this study shows that different FTD clinical syndromes
and patterns of neuropsychological impairment are seen
in each FTLD-TDP subtype. Following from these ob-
servations, this study links each TDP-43 subtype to dis-
tinct cerebral atrophy patterns. Type 1 FTLD-TDP is
associated with semantic dementia and with either left
or right-predominant anterior temporal lobe atrophy.
Type 2 is associated with bvFTD or FTD-MND and a
more symmetric pattern involving the anteromedial
temporal and orbitomedial frontal lobes and anterior
insulae. Type 3 is associated with PNFA and cortico-
basal syndrome, as well as with bvFTD and FTD-
MND. Accordingly, we identified a more dorsal pattern
of asymmetric atrophy affecting the frontal, temporal,
and insular lobes as well as the anterior cingulate and

parietal areas. The unclassifiable patients all presented
with FTD-MND, but no significant areas of atrophy
were detected. The present clinical and anatomic associ-
ations argue that TDP-43 subtyping provides a biologi-
cally significant framework for understanding the
FTLD-TDP spectrum.

Previous pathologic FTLD series have investi-
gated the clinical features associated with TDP-43
pathology although without subtype-specific imag-
ing analysis.2,9,23-29 Findings in this study consistent
with previous work are the association of semantic
dementia with type 12 and the association of PNFA
and CBS with type 3, including patients with pro-
granulin mutations.10,24 FTD-MND has been associ-
ated most closely with Type 2 pathology2 but also in
some series with type 323,25 (as in this study). The
percentage of cases with FTD-MND and type 3
FTLD-TDP varies widely between series, with some
reporting no cases29 and one reporting MND in al-
most half of the patients with type 3 pathology.25

A recent study suggested, based on a principle
component analysis of reduced neuropathologic
data, that TDP-43 pathology forms a continuum
rather than distinct subtypes.30 Our findings, in con-
trast, provide novel neuroimaging evidence to sup-
port TDP-43 subtyping as a biologically meaningful
and constructive framework for understanding
FTLD-TDP. Four patients who could not be catego-
rized according to current schemes had MND and

Figure 3 Voxel-based morphometry analysis on gray matter regions in the type 3 group relative to healthy
controls (A) and in the type 3 subgroups with right- and left-sided predominant atrophy (B)

Statistical parametric maps have been thresholded at p � 0.001 after false discovery rate correction over the whole brain
volume and rendered on a study-specific average group T1-weighted MRI template image in DARTEL space. The color bar
(left) indicates the t score. The left hemisphere is shown on the left of each figure.
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died with TDP-43 pathology too sparse to classify.
Consistent with a short disease duration and better
performance on neuropsychological testing, these pa-
tients showed no significant atrophy in the VBM
analysis, and the brains of these patients showed little
cerebral gross atrophy at postmortem.

Finally, this study demonstrates the atrophy pat-
tern seen in semantic dementia due to a single under-
lying pathology. Previous studies suggest that type 1
FTLD-TDP is by far the most common pathologic
substrate for this syndrome,31 but some patients with
FTLD-tau or Alzheimer disease also present with se-
mantic dementia and may show a different anatomic
pattern.32 This heterogeneity could have altered prior
imaging findings based on living patients with mixed
pathologic substrates. Here, patients with type 1
FTLD-TDP and semantic dementia featuring left-
and right-predominant degeneration showed nearly
mirror-image atrophy patterns, supporting the no-
tion that these 2 clinical syndromes reflect the same
underlying disorder.33,34
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MOC PIP. . .what?
We’re here to help you make sense of it all.

If this acronym doesn’t make sense to you, it will. Because now is the time to start preparing to meet
the requirements of the four components of the ABMS-mandated Maintenance of Certification
(MOC) program: Professional Standing, Self-Assessment and Lifelong Learning, Cognitive Exper-
tise—and the new Performance in Practice (PIP), which can take up to two years to complete.

Make sense of it. Visit www.aan.com/view/mocpip.
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