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SUMMARY

Neurodegenerative diseases target large-scale
neural networks. Four competing mechanistic hy-
potheses have been proposed to explain network-
based disease patterning: nodal stress, transneuro-
nal spread, trophic failure, and shared vulnerability.
Here, we used task-free fMRI to derive the healthy
intrinsic connectivity patterns seeded by brain re-
gions vulnerable to any of five distinct neurodegener-
ative diseases. These data enabled us to investigate
how intrinsic connectivity in health predicts region-
by-region vulnerability to disease. For each illness,
specific regions emerged as critical network ‘‘epi-
centers’’ whose normal connectivity profiles most
resembled the disease-associated atrophy pattern.
Graph theoretical analyses in healthy subjects re-
vealed that regions with higher total connectional
flow and, more consistently, shorter functional paths
to the epicenters, showed greater disease-related
vulnerability. These findings best fit a transneuronal
spreadmodel of network-based vulnerability. Molec-
ular pathological approaches may help clarify what
makes each epicenter vulnerable to its targeting dis-
ease and how toxic protein species travel between
networked brain structures.

INTRODUCTION

Neurodegenerative diseases have long been linked to neural

networks by the clinical and anatomical progression observed

in patients (Braak and Braak, 1991; Pearson et al., 1985;

Saper et al., 1987; Weintraub and Mesulam, 1996). Emerging

network-sensitive neuroimaging techniques have allowed

researchers to demonstrate that the spatial patterning of each

disease relates closely to a distinct functional intrinsic connec-

tivity network (ICN), mapped in the healthy brain with task-free

or ‘‘resting-state’’ fMRI (Buckner et al., 2005; Seeley et al.,

2009). Collectively, these findings raise mechanistic questions

about whether and how connectivity in health predicts regional

neurodegeneration severity in disease. In Alzheimer’s disease,

increasing evidence suggests that pathology may begin within
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key vulnerable ‘‘hubs,’’ defined as central nodes within the

target network’s architecture (Buckner et al., 2009). Still, open

questions remain with regard to why each disease adopts

a network-related spatial pattern. At least four disease-general

hypotheses have been offered and can be summarized as (1)

‘‘nodal stress,’’ in which regions subject to heavy network traffic

(i.e., ‘‘hubs’’) undergo activity-related ‘‘wear and tear’’ that gives

rise to or worsens disease (Buckner et al., 2009; Saxena and

Caroni, 2011); (2) ‘‘transneuronal spread,’’ in which some toxic

agent propagates along network connections, perhaps through

‘‘prion-like’’ templated conformational change (Baker et al.,

1994; Frost and Diamond, 2010; Frost et al., 2009; Jucker and

Walker, 2011; Lee et al., 2010; Prusiner, 1984; Ridley et al.,

2006; Walker et al., 2006); (3) ‘‘trophic failure,’’ in which network

connectivity disruption undermines inter-nodal trophic factor

support, accelerating disease within nodes lacking collateral

trophic sources (Appel, 1981; Salehi et al., 2006); and (4) ‘‘shared

vulnerability,’’ in which networked regions feature a common

gene or protein expression signature that confers disease-

specific susceptibility evenly distributed throughout the network.

Although these hypothesized network degeneration mecha-

nisms need not be considered mutually exclusive, they make

competing predictions with regard to how healthy network archi-

tecture should influence disease-associated regional vulnera-

bility (Figure 1).

Here, we explored the relationship between healthy functional

architecture, as assessed with graph theoretical analyses of

task-free fMRI data, and neurodegenerative disease vulnera-

bility, as assessed by quantifying regional atrophy in patients.

Our previous work showed that each of five distinct neurodegen-

erative syndromes featured an atrophy pattern that mirrored

the healthy functional ICN seeded by the cortical region most

atrophied in patients with that syndrome (Seeley et al., 2009).

The present study, in contrast, examined every brain region

within the five disease-related atrophy maps to identify the

regions whose connectivity pattern in health most resembled

the atrophy map seen in each syndrome (see Figure 2 for

a methods schematic). The resulting dataset fully specified the

node pair connectivity strengths across all regions atrophied in

any of the five diseases; collectively, these regions traversed

most cerebral cortical and subcortical structures. With this

information in hand, we used graph theoretical analyses to test

model-based predictions of how network architecture in health

relates to disease-associated tissue loss (Figure 1). Although

previously described spatial atrophy patterns (Seeley et al.,
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Figure 1. Predictions Made by Network-Based Degeneration Models: Effects of Healthy Intrinsic Connectivity Graph Metrics on Atrophy

Severity in Disease

A simplified healthy connectivity graph is shown (far left) for illustration purposes only; circles represent nodes (brain regions), lines represent edges (a connection

between two nodes), and edge lengths represent the connectivity strength between nodes, with shorter edges representing stronger connections. The orange

node represents an epicenter. Three nodes, labeled as A, B, and C, feature contrasting graph theoretical properties to illustrate predictionsmade by the network-

based vulnerability models (far right). Listed in the center column are the relationships predicted by each model. For example, the transneuronal spread model

predicts that nodes with shorter (Y) paths to the epicenter in health will be associated with greater ([) atrophy severity in disease. Justification for each model’s

prediction set is provided in the main text.
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2009) specified the brain regions interrogated for the current

study, all network connectivity analyses were performed on an

independent dataset of 16 healthy subjects aged 57 to 70

(8 females, all right-handed and psychoactive medication-free;

see Experimental Procedures). The resulting connectivity

patterns and graph metrics were used to relate each region’s

healthy connectivity profile to that region’s disease-specific

vulnerability, defined as its atrophy severity in patients.

RESULTS

Focal Epicenters Anchor Each Disease-Associated
Large-Scale Network
In previous work (Seeley et al., 2009), we identified re-

gional atrophy maxima for five neurodegenerative syndromes:

Alzheimer’s disease (AD), behavioral variant frontotemporal

dementia (bvFTD), semantic dementia (SD), progressive nonflu-

ent aphasia (PNFA), and corticobasal syndrome (CBS). Then,

using healthy subjects scanned with task-free fMRI, we used

these five atrophy maxima as ‘‘seed’’ regions to derive five

ICNs, representing regions whose blood-oxygen level-depen-

dent (BOLD) signal time-series significantly correlated with that

of the seed. The atrophy maxima seeded ICNs that resembled

the parent atrophy maps, supporting the view that neurodegen-

erative disease patterns are network based. By studying only

one seed region per atrophy pattern, however, this approach

could not determine which regions featured maximal con-

nectivity to the other vulnerable regions. We anticipated that

each disease-associated pattern would harbor focal ‘‘epi-

centers,’’ regions whose connectivity patterns—in the healthy

brain—most closely mirrored the disease vulnerability pattern.

To seek out these epicenters, here we took a more comprehen-

sive, data-driven approach by studying all regions within each of
the five atrophy patterns. For example (Figure 2), we created

1,128 4 mm radius spherical regions of interest (ROIs) covering

the entire bvFTD atrophy pattern and built 1,128 functional ICN

maps, one seeded by each ROI, for each of our 16 healthy

subjects. We then derived 1,128 group-level ICN maps for

comparison to the (binarized) bvFTD atrophy pattern. Applying

this general strategy to all five syndromic atrophy patterns, we

used group-level goodness-of-fit (GOF) analyses (see Experi-

mental Procedures) to reveal five sets of distinct and focal

epicenters (Figure 3 and see Figure S1 and Table S1 available

online), whose large-scale connectivity maps in health showed

highest GOF to the binarized syndromic atrophy patterns.

Remarkably, although atrophy severity valuesmade no contribu-

tion to epicenter identification, the epicenters uncovered here

were seated in or near the most atrophic regions identified in

our previous work (Seeley et al., 2009; Figure S1), suggesting

that epicenters—in addition to being broadly connected with

regions atrophied in a disease—are often among the most atro-

phied (and perhaps earliest affected) regions in that disease.

Although the terms ‘‘epicenter’’ and ‘‘hub’’ have been used inter-

changeably to describe transmodal convergence zones within

healthy large-scale brain networks (Mesulam, 2012), we chose

‘‘epicenter’’ to describe the regions identified here because (1)

‘‘epicenter’’ carries a pathogenic connotation, describing a

region that is often but not necessarily the site of maximal

damage and (2) ‘‘hub’’ evokes a brain region with high node

centrality (‘‘hub-ness’’), as defined within the network science

lexicon. Our epicenter identification strategy, however, did not

include graph theoretical measures and thus provided no

guarantee that the identified epicenters would represent true

network hubs.

Having identified a set of focal epicenters within each atrophy

pattern, we next sought to examine where the epicenters fit
Neuron 73, 1216–1227, March 22, 2012 ª2012 Elsevier Inc. 1217



Figure 2. Study Design Schematic

Atrophy maps from five neurodegenerative syndromes were delineated in a previous study (Seeley et al., 2009) and binarized to create five sets of 4 mm radius

spherical ROIs representing an epicenter ‘‘candidate pool’’ for each syndrome. Based on these pools, five steps were involved to infer the relationship between

healthy intrinsic functional connectivity and atrophy severity in disease: (1) the intrinsic functional connectivity of each ROI was derived with task-free fMRI data

from healthy controls, resulting in one whole-brain ICN map for each ROI; (2) regions whose ICNs in health featured significant goodness of fit (GOF) to the

binarized parent atrophy map were identified as ‘‘epicenters’’ at the group-level; (3) group-level weighted, thresholded healthy ICN matrices were constructed,

describing connectivity between all ROI pairs within the binarized atrophy template; (4) three graph theoretical metrics were calculated from the group-level ICN

matrices, including total flow (TF), shortest functional path to the epicenters (SPE), and clustering coefficient (CC); (5) correlation and stepwise regression

analyses were employed to examine the relationship between the three graph theoretical metrics in health and atrophy t scores in disease. This process was

carried out for each of five syndromic atrophy patterns; for illustration, the steps used for the bvFTD-related analyses are shown here.
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within their target network’s functional architecture. To this end,

we generated five intra-network healthy connectivity matrices

covering all ROIs, including the epicenters, contained within

the five binary spatial atrophy patterns (Figure 3). Specifically,

we first generated unthresholded subject-level intranetwork

matrices, using ROIs as nodes and connectivity z scores

between ROI pairs as the weights of the undirected edges

(see Experimental Procedures). Group-level intranetwork

healthy connectivity matrices were then derived for each

network using one-sample t tests. Significant edges were deter-

mined by thresholding at p < 0.01, false discovery rate (FDR)

corrected for multiple comparisons across the matrix; nonsignif-

icant edges were assigned a weight of zero. Examination of

these matrices revealed that the epicenters related to each

disease showed broad-based connectivity with other nodes in
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the target network, consistent with the manner in which they

were identified (Figure 3). We further questioned whether these

epicenters, though defined by their healthy ICN’s resemblance

to the (binary) parent atrophy pattern, might also serve as func-

tional hubs, defined as nodes with high weighted degree

centrality (total connectional flow) within the target network

(Sporns et al., 2007). As shown in Figure S2, although at least

some epicenters for each disease ranked among the nodes

highest in total intranetwork flow, this relationship remained

nuanced and varied by disease pattern, and many nonepicenter

regions showed equal or greater total flow. These observations

indicated that the amount of network traffic experienced by each

node may influence but does not determine the network’s

disease-critical epicenters. In addition, the dissociation between

epicenters and hubs suggested that graph metrics related to



Figure 3. Healthy Intrinsic Connectivity Matrices and Network Epicenters for Each of Five Neurodegenerative Syndrome Atrophy Patterns

Regions whose healthy ICN showed significant goodness of fit (GOF) to each of the five atrophy maps were identified as epicenters. A subset of these epicenters

is shown here superimposed on the MNI template brain (see Table S1 for additional details). The red-orange color bar represents the t scores associated with the

group-level significance of the epicenter GOF scores. Matrices representing the group-level node pairwise connectivity strengths were organized from left to right

(and top to bottom) in the order of frontal (F), temporal (T), parietal (P), occipital (O), paralimbic (Pl), limbic (L), and subcortical (S) regions. The blue-red color bar

represents the intrinsic connectivity between each node pair, defined as the t score from the thresholded group-level one-sample t test (see Experimental

Procedures). Subthreshold node pair connectivity strengths were colored dark blue and omitted from the matrices. See also Figures S1 and S2 and Table S1.

Amy, amygdala; ANG, angular gyrus; Cau, caudate; FI, frontoinsula; IFGoper, inferior frontal gyrus (pars opercularis); IFGtri, inferior frontal gyrus (pars trian-

gularis); l, left; pACC, pregenual anterior cingulate cortex; pHIP, parahippocampal gyrus; postCG, postcentral gyrus; preCG, precentral gyrus; Put, putamen; r,

right; TP, temporal pole.
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these concepts might make dissociable contributions to atrophy

severity.

Nodes with Higher Intranetwork Centrality and
Functional Proximity to Epicenters in Health Show
Greater Vulnerability to Disease
Next, we sought to address how the brain’s healthy connectional

architecture, defined in a graph theoretical framework, relates to

disease-associated regional vulnerability, defined by atrophy

severity in patients. We translated the four major mechanistic

models into distinctive sets of connectivity-related predictions

(Figure 1). The nodal stress model would predict that metabolic

demands or other activity-dependent factors conferred by
higher nodal flow will accelerate vulnerability, worsening nodal

atrophy severity. The transneuronal spread hypothesis would

predict greatest degeneration in regions connectionally closest

to the node of onset, operationally defined here as those regions

having the shortest functional path to any of the epicenters. The

trophic failure model would predict that eccentric nodes with low

total flow and low clustering coefficients will prove less resilient

due to a lack of redundant trophic inputs. The shared vulnera-

bility model, in contrast to all others, predicts no direct impact

of intranetwork architecture on vulnerability, which is driven

instead by a common gene or protein expression profile.

To compare the model-based predictions, we used the

healthy intrinsic connectivity matrices (Figure 3) to generate
Neuron 73, 1216–1227, March 22, 2012 ª2012 Elsevier Inc. 1219



Figure 4. Intranetwork Graph Theoretical Connectivity Measures in Health Predict Atrophy Severity in Disease

Regions with high total connectional flow (row 1) and shorter functional paths to the epicenters (row 2) showed significantly greater disease vulnerability (p < 0.05

familywise error corrected for multiple comparisons in AD, bvFTD, SD, PNFA, and CBS), whereas inconsistent weaker or nonsignificant relationships were

observed between clustering coefficient and atrophy (row 3). Cortical regions = blue circles; subcortical regions = orange circles. See also Tables S2–S5.
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three graph theoretical metrics for each region within each target

network: total flow, shortest path to the epicenters, and

clustering coefficient (see Experimental Procedures). We then

examined the correlation between these nodal metrics, derived

from healthy subjects, and nodal atrophy severity in the five

neurodegenerative syndromes (Figure 4 and Table S2). A node’s

total flow in health showed a positive correlation with disease

vulnerability (Figure 4, row 1; p < 0.05 familywise error corrected

for multiple comparisons) in AD (r = 0.43, p = 8.4e�40), bvFTD (r =

0.35, p = 4.9e�36), SD (r = 0.29, p = 9.9e�15), PNFA (r = 0.40, p =

5.4e�7), and CBS (r = 0.40, p = 7.9e�21). A shorter functional path

from a node to the disease-related epicenters also predicted

greater atrophy severity (Figure 4, row 2; p < 0.05 familywise

error corrected for multiple comparisons) in all five diseases:

AD (r = �0.62, p = 3.2e�90), bvFTD (r = �0.30, p = 3.1e�25), SD
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(r = �0.60, p = 1.0e�67), PNFA (r = �0.34, p = 1.2e�5), CBS (r =

�0.33, p = 7.0e�13), an effect that remained significant after

controlling for the Euclidean distance (in Montreal Neurological

Institute [MNI] space) from each node to its functionally nearest

epicenter. Finally, no consistently significant positive or negative

correlations were identified between nodal clustering coefficient

and vulnerability across the five diseases (Figure 4, row 3): AD

(r = �0.15, p = 2.1e�5), bvFTD (r = 0.05, p = 0.56), SD (r =

�0.20, p = 9.9e�8), PNFA (r = 0.16, p = 0.03), CBS (r = 0.28,

p = 7.7e�11). To reinforce the pairwise correlation findings while

considering the influence of all network-based metrics together,

we performed stepwise linear regression analyses in which

atrophy served as the dependent measure, graphmetrics served

as independent predictors, and Euclidean distance from node to

epicenter and region type (cortical versus subcortical) were



Figure 5. Healthy Intrinsic Connectivity Matrix Representing all ROI Pairwise Interactions across the Five Neurodegenerative Syndrome

Atrophy Patterns

Matrices representing the group-level node pairwise connectivity strengths were organized from left to right (and top to bottom) in the order of AD, bvFTD, SD,

PNFA, and CBS regions. Ordering of regions within each disease pattern follows the scheme used in Figure 3. The blue-red color bar represents the intrinsic

connectivity strength between each node pair, defined as the t score from the thresholded group-level one-sample t test (see Experimental Procedures). See also

Tables S2–S5.
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entered as nuisance covariates. These analyses revealed that

although total flow accounted for a significant proportion of the

variance in atrophy severity for all five syndromes, the shortest

functional path to the epicenters explained more of the atrophy

variance within the AD and SD patterns (Table S3). Overall, these

intranetwork findings are compatible with both the nodal stress

and transneuronal spread models and suggest that these mech-

anisms may play differing roles in shaping regional vulnerability

across the five syndromes. Predictions derived for the trophic

failure and shared vulnerability models were not supported by

these experiments.

Off-Target Network Nodes with Greater Functional
Proximity to Epicenters in Health Show Greater
Vulnerability to Disease
Neurodegenerative diseases are known to spread from their

initial target network to ‘‘off-target’’ networks in later stages of

disease (Förstl and Kurz, 1999; Miller and Boeve, 2009; Seeley

et al., 2008). We reasoned that vulnerability within off-target

network regions may also be governed by connectional profile.

To test this idea, we created a single transnetwork connectivity

matrix including all ROIs in the five disease-related atrophy

maps (Figure 5) and recalculated the three graph metrics. Nodes
within the transnetwork connectivity graph having shorter func-

tional paths to the disease-associated epicenters were associ-

ated with greater atrophy in patients with that disease (Figure 6,

row 2; Table S2; p < 0.05 familywise error corrected for multiple

comparisons) across all five diseases: AD (r = �0.27,

p = 8.1e�46), bvFTD (r = �0.65, p < 1e�300), SD (r = �0.54, p =

1.5e�198), PNFA (r = �0.52, p = 3.5e�183), and CBS (r = �0.54,

p = 2.1e�197), an effect that remained significant after controlling

for the Euclidean distance from each node to its functionally

nearest epicenter. Total flow (AD [r = �0.08, p = 1.8e�5], bvFTD

[r = 0.29, p = 6.7e�51], SD [r =�0.30, p = 7.2e�57], PNFA [r = 0.26,

p = 1.2e�41], CBS [r = 0.33, p = 4.6e�67]) and clustering coeffi-

cient (AD [r = �0.0, p = 0.06], bvFTD [r = 0.21, p = 7.8e�28], SD

[r = �0.38, p = 5.2e�91], PNFA [r = 0.19, p = 1.1e�22], CBS

[r = 0.21, p = 1.7e�26]), in contrast, exerted a weaker and incon-

sistent influence on atrophy severity across the five diseases

(Figure 6, rows 1 and 3; Table S2). Following the same approach

taken for the intranetwork analyses, a stepwise linear regression

performed at the transnetwork level revealed that the shortest

functional path to the epicenters stood out as the single

strongest graph metric predictor across all five syndromes

(Table S3). Similar results were obtained when including

Euclidean distance from each node to its functionally nearest
Neuron 73, 1216–1227, March 22, 2012 ª2012 Elsevier Inc. 1221



Figure 6. Transnetwork Graph Theoretical Connectivity Measures in Health Predict Atrophy Severity in Disease

Row 2: ROIs showing greater disease-related atrophy were those featuring shorter functional paths, in the healthy brain, to the disease-associated epicenters

(p < 0.05 familywise error corrected for multiple comparisons for AD, bvFTD, SD, PNFA, and CBS). Row 1 and 3: Inconsistent weaker or nonsignificant

relationships were observed between total flow or clustering coefficient and disease-related atrophy. See also Tables S2–S5.
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epicenter in the model, except that in AD this distance explained

a substantial proportion of atrophy variance, reducing the

contribution from the shortest path to the epicenters. The strong

relationship between functional proximity to the epicenters and

atrophy severity emerged from these transnetwork analyses

even though most nodes contributing to each analysis came

from ‘‘off-target’’ networks that made no contribution to

epicenter identification. Nonetheless, to eliminate the possibility

that node selection bias contributed to the observed relation-

ships, we repeated the transnetwork correlation and stepwise

regression analyses after removing all ROIs within each target

network, thereby examining only how the connectivity of ‘‘off-

target’’ network nodes predicts vulnerability. These additional

control analyses showed that a node’s shortest functional path

to the target network epicenters remained the most robust and
1222 Neuron 73, 1216–1227, March 22, 2012 ª2012 Elsevier Inc.
consistent predictor of that node’s atrophy in the target disease

(Tables S4 and S5). Overall, these findings suggest that although

both the nodal stress and transneuronal spread models are

consistent with the intranetwork analysis, incorporating off-

target networks provided stronger support for the transneuronal

spread hypothesis. Furthermore, the transnetwork graphmetrics

converge with previous studies investigating the relationships

between the five neurodegenerative syndromes. For example,

consistent with our previous findings that bvFTD and AD feature

divergent intrinsic connectivity changes (Zhou et al., 2010), the

nodes within the AD and bvFTD patterns featured the most

dissimilar healthy connectional profiles and disease-associated

atrophy severities (Figure 6). Regions within the bvFTD pattern

showed the lowest atrophy in AD and had among the longest

paths to the AD-related epicenters and vice versa.
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DISCUSSION

The present results provide insights regarding how the brain’s

functional architecture shapes vulnerability to neurodegenera-

tive disease. We found that each of five neurodegenerative

patterns contains focal network epicenters whose healthy brain

connectivity profiles strongly resemble the parent atrophy

pattern. Although previous studies have demonstrated the simi-

larity between single seed-based healthy ICNs and disease-

related atrophy (Buckner et al., 2005; Seeley et al., 2009),

the present study used a comprehensive, high-dimensional

network mapping strategy to seek out those regions with

connectivity maps most closely aligned with five patterns of

disease-associated vulnerability. We then used graph theoret-

ical approaches to seek disease-general principles governing

connectivity-vulnerability interactions, testing predictions made

by four proposed models of network-based neurodegeneration.

We found that, within each targeted network, a node’s vulner-

ability was best predicted by greater total connectional flow

through that node and by a shorter functional path to the

disease-related epicenters. Extending this analysis across all

regions contained in any of the five networks revealed that

intrinsic functional proximity to the epicenters represents the

most potent predictor of disease-related atrophy. Therefore,

although both the nodal stress and transneuronal spread model

predictions received support from analyses of the individual

target networks, incorporating the off-target networks provided

strongest support for the notion that neurodegenerative

diseases spread from region to region along connectional lines

to adopt a network-based spatial pattern.

Exploring the Target Networks: Epicenters and Early
Disease Spread
The most mysterious aspect of neurodegenerative disease

regards how each disease selects its initial target or targets.

Early selective vulnerability, though not the focus of this study,

creates a starting point from which disease then spreads.

Regions showing greatest atrophy at later stages may or may

not represent the sites of initial injury, and even longitudinal

imaging studies that follow patients from health to disease may

overlook incipient microscopic pathology within small neuronal

populations (Braak et al., 2011). Despite these important

caveats, our findings converge with our previous work to

suggest that the regionsmost atrophied in each syndrome repre-

sent disease-specific network ‘‘epicenters,’’ whose connectivity

in health serves as a template for the spatial patterning of

disease. These epicenters bear close relationships to the early

clinical deficits that define each parent syndrome. In AD, the

angular gyrus may serve as the key heteromodal association

hub through which information flows from posterior unimodal

and polymodal association cortices to modules specialized for

the memory, visuospatial, language, and praxis functions lost

in patients with AD. Because atrophy in AD is more closely

related to tau neurofibrillary than amyloid plaque pathology

(Scheinin et al., 2009; Whitwell et al., 2008), we suspect that

our connectivity-vulnerability findings in AD largely reflect tau

pathology within posterior elements of the large-scale network

known as the default mode network (Greicius et al., 2003,
2004). Nonetheless, the hub-like nature of the angular gyrus

may produce activity-dependent ‘‘wear and tear’’ or increases

in amyloid production that heighten its early vulnerability to

amyloid deposition (Buckner et al., 2009) and incite or com-

pound the neurodegenerative process. Interestingly, numerous

frontal regions exhibit striking resistance to AD-related neurode-

generation despite having high fibrillar amyloid-beta deposition

(Jack et al., 2008) and, as shown here, short functional paths

to the angular gyrus in some instances. This disconnect may

reflect the complexity of underlying AD pathology which, in con-

trast to all other diseases studied here, features two co-occur-

ring major molecular pathologies (amyloid-beta and tau). In

bvFTD, the identified epicenters in the right frontoinsula and

pregenual anterior cingulate cortex are known for their coactiva-

tion during salience processing (Seeley et al., 2007), and both

regions harbor a unique class of large, bipolar projection neurons

targeted in early-stage bvFTD (Kim et al., 2011; Seeley et al.,

2006). The anterior temporal epicenters identified within the

SD pattern feature prominent connections to upstream cortices

that may converge on the epicenters to foster multimodal

semantic integration (Patterson et al., 2007). In PNFA, our

epicenter search identified the inferior frontal gyrus (Broca’s

area), as well as striatal and thalamic sites with robust

operculofrontal connections (Alexander et al., 1986). The CBS

epicenters occupy the rolandic and perirolandic cortices

involved in skeletomotor planning, control, and execution func-

tions compromised early in the course of typical CBS regardless

of the underlying pathology (Lee et al., 2011).

How does disease spread throughout the network once one of

its key epicenters is compromised? The present data suggest

that at least two major factors influence spread within the target

network. First, across all five diseases, network nodes subject to

greater intranetwork total connectional flow were found to

undergo greater atrophy. This observation raises the possibility

that activity-dependent mechanisms, such as oxidative stress,

local extracellular milieu fluctuations, or glia-dependent phe-

nomena, influence regional neurodegeneration severity. Further-

more, nodes with shorter connectional paths to an epicenter

showed greater vulnerability, suggesting that transneuronal

spread represents one of the key factors driving early target

network degeneration. In this regard, epicenter infiltration by

disease may provide privileged but graded access across the

network that determines where the disease will arrive next.

Although trophic factor insufficiency or a shared gene or protein

expression profile may help to determine sites of initial vulnera-

bility, the present findings are more difficult to reconcile with

these models.

Disease Progression into Off-Target Networks:
Transneuronal Spread
Regions exquisitely vulnerable to one neurodegenerative

disease are often spared in another. On the other hand, once

disease has spread throughout its target network, the process

often extends into ‘‘neighboring’’ networks, defined as those

with stronger functional relationships to the primary target

network (Seeley et al., 2008). We reasoned that these observa-

tions might be best explained within a connectivity-based

framework. Combining data across all five disease-vulnerable
Neuron 73, 1216–1227, March 22, 2012 ª2012 Elsevier Inc. 1223
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networks into a single connectome (covering 68% of the total

cerebral gray matter volume), we found greater atrophy among

off-target network regions with shorter functional paths to the

target network’s focal epicenters. Combining the intranetwork

and transnetwork findings, these data provide strongest support

for the transneuronal spread model, which predicts that the

strength of any node’s functional connectivity to an epicenter

will determine that node’s ultimate vulnerability to a neurodegen-

eration once the disease has taken hold. In contrast to the intra-

network analysis, we found no consistent evidence for the nodal

stress model’s predictions at the transnetwork level, perhaps

because across a broader brain network space a node’s

centrality need not determine its susceptibility to every disease

process. As seen at the intra-network level, at the transnetwork

level we found no consistent evidence supporting predictions

derived from the trophic failure or shared vulnerability models.

Limitations and Future Directions
Several important limitations of this study should be noted. The

AD group used to define the anatomical pattern studied here

included patients with early age-of-onset AD, which features

a more distributed cortical pattern when compared to the hippo-

campal-predominant pattern seen in late age-of-onset patients

(Kim et al., 2005). This factor could account, at least in part, for

the identification of the angular gyrus as the lone epicenter within

the AD pattern. The present analyses used regional functional

connectivity approaches in a healthy older control group to

predict neurodegeneration severity in patients. Although the

human connectome evolves with aging (Zuo et al., 2010), we

chose healthy older subjects to capture the connectome upon

which neurodegeneration is most often superimposed. Although

we cannot exclude preclinical neurodegeneration in our control

sample, each subject was screened with a battery of neuropsy-

chological tests and found to perform within normal limits for

age. The ideal approach for predicting neurodegeneration from

connectivity data would be to follow individuals from health to

disease, exploring connectivity-vulnerability interactions within

single subjects. Although this approach may prove challenging

for the FTD syndromes studied here, future longitudinal analyses

of this type should become feasible for AD through large,

ongoing, collaborative longitudinal studies.

Although we used the same five group-level atrophy maps to

identify the epicenter ‘‘candidate pool’’ for each disease and to

assess connectivity-vulnerability relationships, several key

design elements prevented circularity. First, atrophy severity

served as the major outcome variable but was not involved in

epicenter identification. Second, the healthy network matrices

used for calculating graph metrics were epicenter-independent,

composed of every regionwithin each binary atrophymap. Third,

the transnetwork graphs and analyses (Figures 5 and 6) spanned

regions from all five binary atrophy maps. Therefore, most

regions used in these analyses were not involved in the identifi-

cation of any given epicenter, and even limiting the transnetwork

analyses to off-target network regions produced little change in

the major findings.

Our correlation-based intrinsic functional connectivity ap-

proaches only measure symmetric (undirected) connections

between regions with temporally synchronous BOLD fluctua-
1224 Neuron 73, 1216–1227, March 22, 2012 ª2012 Elsevier Inc.
tions. These methods cannot differentiate direct from indirect

links or infer causality (direction of information flow). These limi-

tations apply to all current intrinsic functional network analyses in

humans because the true graph (determined at the microscopic

level by the presence of axonal connections between regions)

cannot be determined with existing methods. We attempted to

mitigate these concerns by thresholding the graphs at a stringent

statistical threshold, leaving only strong edges for calculation of

graph metrics, but this approach does not preclude our edges

from representing indirect connections within or outside the

network. Despite these limitations, the functional network

graphs derived here provide relevant data about network

organization.

Potential Implications for Cellular-Molecular Biology
of Neurodegeneration
Understanding the cellular and molecular basis for network-

based disease spread represents an important priority for neuro-

degenerative disease research. Human intrinsic connectivity

data cannot directly inform cellular pathogenesis models, just

as simple laboratory models include assumptions regarding

their relevance to human disease. This study sought to bridge

these research streams by translating mechanistic network-

based neurodegeneration models into simple but rational pre-

dictions regarding the relationships between network connec-

tivity and vulnerability. Complementary studies using structural

connectivity data could further explore connectivity-vulnerability

interactions. The present findings suggest that, overall, a trans-

neuronal spread model best accounts for the network-based

vulnerability observed in previous human neuropathological

and imaging studies. Several mechanisms of transneuronal

spread have been proposed, including axonal transport of unde-

tected viruses or toxins (Hawkes et al., 2007; Saper et al., 1987).

Providing a more parsimonious account, growing evidence

suggests that prion-like mechanisms may promote the spread

of toxic, misfolded, nonprion protein species between intercon-

nected neurons (Baker et al., 1993, 1994; Brundin et al., 2010;

Clavaguera et al., 2009; Frost and Diamond, 2010; Frost et al.,

2009; Hansen et al., 2011; Jucker and Walker, 2011; Lee et al.,

2010; Li et al., 2008; Ridley et al., 2006; Walker et al., 2006).

This notion, that many or all noninfectious neurodegenerative

diseases may propagate along networked axons via templated

conformational change, has been put forth since the introduction

of the prion concept (Prusiner, 1984, 2001). Although our data

cannot exclude contributions from failed trophism or shared

vulnerability, the present human findings complement the recent

tide of cell-based and rodent disease model data to suggest that

prion-like transneuronal spreading mechanisms merit further

aggressive investigation.

EXPERIMENTAL PROCEDURES

Subjects

Patients with neurodegenerative syndromes who defined the five disease-

vulnerable ROI sets were those studied previously as described (Seeley

et al., 2009). Clinical diagnostic criteria and clinicopathological correlation

data are detailed in the Supplemental Experimental Procedures. In addition,

we studied 16 healthy controls (8 females, all right-handed, mean age 65.4

(s.d. 3.2) years, psychoactive medication-free, not included in our previous
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work (Seeley et al., 2009)) evaluated at the UCSFMemory and AgingCenter. All

subjects provided informed consent, and the procedures were approved by

the UCSF Committee on Human Research. Healthy subjects were recruited

from the local community through advertisements and underwent a compre-

hensive neuropsychological assessment and a neurological exam within

180 days of scanning. All controls met the criteria of having a Clinical Dementia

Rating scale total score of 0, a mini-mental state examination score of 28 or

higher, no significant history of neurological disease or structural lesions on

MRI, and a consensus diagnosis of cognitively normal.

Image Acquisition

All subjects underwent an eight-minute task-free or ‘‘resting-state’’ functional

magnetic resonance (fMRI) scan after being instructed to remain awake with

their eyes closed. Functional and structural images were acquired on a 3 Tesla

Siemens MRI scanner at the Neuroscience Imaging Center, University of

California, San Francisco. Functional MRI scanning was performed using

a standard 12-channel head coil. Thirty-six interleaved axial slices (3 mm thick

with a gap of 0.6mm) were imaged parallel to the plane connecting the anterior

and posterior commissures using a T2*-weighted echo planar sequence

(repetition time [TR]: 2,000 ms; echo time (TE): 27 ms; flip angle [FA]: 80�; field
of view: 230 3 230 mm2; matrix size: 92 3 92; in-plane voxel size: 2.5 3

2.5 mm). For coregistration purposes, a volumetric magnetization prepared

rapid gradient echo (MPRAGE) MRI sequence was used to obtain a

T1-weighted image of the entire brain in sagittal slices in the same session

(repetition time, 2300 ms; echo time, 2.98 ms; inversion time, 900 ms; flip

angle, 9). The structural images were reconstructed as a 160 3 240 3 256

matrix with 1 mm3 spatial resolution.

Image Preprocessing

After discarding the first 16 s to allow for magnetic field stabilization, func-

tional images were realigned and unwarped, slice-time corrected, coregis-

tered to the structural T1-weighted image, normalized, and smoothed with

a 4 mm full-width at half-maximum Gaussian kernel using SPM5 (http://

www.fil.ion.ucl.ac.uk/spm/), resulting in images with a voxel size of 2 mm3.

Coregistration was performed between each subject’s mean T2* image and

that subject’s T1-weighted image, and normalization was carried out by calcu-

lating the warping parameters between the subject’s T1-weighted image and

the MNI T1-weighted image template and applying those parameters to all

functional images in the sequence.

Seed-Based ICN Derivation

Previously we delineated the atrophy patterns associated with five neu-

rodegenerative disease syndromes by comparing patients to controls using

voxel-based morphometry (VBM) (Seeley et al., 2009). Here, we examined

the healthy functional intrinsic connectivity architecture for all ROIs that could

be situated within the five previously published atrophy patterns. To this end,

we binarized the five atrophy maps and created five sets of 4mm radius spher-

ical ROIs for each map (Figure 2, step 1). Preprocessed task-free fMRI data

from 16 healthy subjects were then used for ROI-based intrinsic connectivity

network (ICN) analyses, seeding all ROIs in each of the five atrophy patterns,

resulting in one intrinsic connectivity map for each ROI. The ROI-based ICN

analyses followed previous methods (Seeley et al., 2009). That is, the average

time series from each ROI within the disease-associated pattern was used as

a covariate of interest in a whole-brain regression analysis, and the global

signal was entered as a nuisance variable. The voxel-wise z scores in the

resulting subject-level ICN maps described the correlation between each

voxel’s spontaneous BOLD signal time series and the average time series of

all voxels within the seed ROI. ICN maps were derived from each ROI in

each individual and entered into second-level, random effects analyses to

derive group-level ICN maps for each ROI.

Identification of Disease-Associated Network Epicenters

We defined epicenters as regions whose pattern of seed-based intrinsic

connectivity in health best fit the disease-related binary atrophy pattern from

which the region was taken (Figure 2, step 2). At the level of the individual

healthy subjects, we assigned one GOF score to each ROI based on the simi-

larity between its healthy ICN map and the target binarized atrophy map. The
GOF score was calculated by multiplying (1) the average z score difference

between voxels falling within the atrophy map and voxels falling outside the

map and (2) the difference in the percentage of positive z score voxels inside

and outside the atrophy map (Zhou et al., 2010). In this way, atrophy severity

values were omitted from the GOF calculation. For each atrophy pattern,

a one-sample t test on the corresponding GOF maps from the sixteen healthy

subjects was used to identify those ROIs (epicenters) with significant GOF

scores, stringently thresholded at p < 0.05, familywise error corrected for

multiple comparisons (Figures 3 and S1) to isolate only the few regions whose

connectivity most closely resembled the disease-associated atrophy map.

The threshold for the SD. GOF map was set to p < 0.0001 (uncorrected) to

adjust for signal loss within temporal pole and orbitofrontal regions that

make up the SD pattern.

Group-Level Intra- and TransnetworkConnectivityMatrixDerivation

To study the healthy intrinsic functional connectome related to each set of

disease-vulnerable regions, we derived group-level intra- and transnetwork

connectivity matrices (Figure 2, step 3). Here, the intranetwork matrices repre-

sent all ROIs within each target network (defined using the binarized atrophy

maps), whereas the transnetwork matrix represents all ROIs across the five

target networks. These matrices were derived as follows. We first extracted

the subject-level intranetwork matrices from the seed-based ICN maps of

each ROI set, using ROIs as nodes and mean connectivity z scores between

ROI pairs as the weights of the undirected edges (Watts and Strogatz,

1998). Edge weight for every node pair (e.g., nodes A and B) was defined

at the subject level as the higher of two connectivity scores (A to B and B

to A) for the A-B pair, where A to B connectivity was derived by (1) calculating

the mean time series across all voxels in node A, (2) determining the z scores

for the connectivity of the node A time series to each voxel within node B, and

(3) averaging the resulting z scores to create a single score. The B to A connec-

tivity score was derived in like manner by reversing A and B in the procedure

described above. This procedure made use of the extensive seed-based

voxel-wise connectivity data generated for epicenter identification while

producing nearly identical node pair connectivity results, in pilot analyses, to

those derived by calculating the correlation between the mean time series

from nodes A and B. We then generated the group-level intranetwork

adjacency matrix containing significant connections by performing a one-

sample t test on the group of intranetwork matrices, stringently thresholded

at p < 0.01, FDR corrected for multiple comparisons to avoid potentially

spurious links introduced by low temporal resolution and hemodynamic blur-

ring in the fMRI signal. The same process was performed for each of the five

ROI sets, resulting in five thresholded intranetwork healthy functional intrinsic

connectivity matrices (Figure 3). A lower statistical threshold of p < 0.05, FDR

corrected for multiple comparisons, was used for the SD pattern to adjust for

the fMRI signal loss characteristic of the temporal pole and orbitofrontal

regions contained in this network, following previous approaches (Devlin

et al., 2000; Seeley et al., 2009). A single healthy transnetwork connectivity

matrix, including all ROIs across the five atrophy patterns as one network,

was constructed in like manner. In the group-level ICN matrices, the pairwise

ROI connectivity t scores resulting from one-sample t test were used as edge

weights.

Graph Theoretical Analyses

To study how intrinsic network architecture in health relates to disease-asso-

ciated vulnerability, we examined three graph theoretical metrics for every

network node (Figure 2, step 4) in both the intranetwork (Figures 3 and 4)

and transnetwork (Figures 5 and 6) group-level healthy ICN adjacency

matrices, including (1) total flow—the sum of the magnitudes of the weighted

connections passing through each node, (2) shortest intrinsic functional path

to the epicenters—the minimum path length to any of the identified epicenters

for the atrophy pattern of interest, and (3) clustering coefficient—the ratio of the

number of edges between a node’s neighbors to the total possible number

of edges between the node’s neighbors (Watts and Strogatz, 1998). Graph

theoretical measures were calculated using in-house MATLAB programs

based on the publicly available Matlab BGL graph library developed by David

Gleich (https://github.com/dgleich/matlab-bgl). Corresponding mathematical

notation has been provided (Rubinov and Sporns, 2010). For atrophy patterns
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featuring multiple epicenters, we chose each ROI’s shortest among the

shortest paths to each epicenter in the matrix. For intranetwork analyses,

graph metrics were based solely on ROIs within each target network pattern,

whereas for transnetwork analyses we considered ROIs in all five networks

together. We limited our analyses to these three metrics because the four

prevailing models of network-based neurodegeneration could be used to

generate distinguishing predictions regarding the relationship between these

metrics and disease-associated atrophy severity (Figure 1).
Correlation between Healthy Network Graph Metrics

and Disease-Associated Atrophy

To test predictions about the relationship between the three graphmetrics and

disease-associated atrophy severity, we performed five separate intranetwork

correlation analyses between disease-associated atrophy and the three nodal

graphmetrics across all ROIs within each of the five disease patterns (Figure 2,

step 5; Figure 4). Here, atrophy severity was defined using a previous VBM

comparison of patients to age-matched controls (Seeley et al., 2009) and aver-

aging the voxel-wise t scores from this comparison across each 4 mm radius

spherical ROI used as a node in the present graph theoretical computations.

Five similar transnetwork correlation analyses (all on the same combined

node set) were performed to assess whether the same principles applied to

off-target networks (Figure 6). For the intra- and transnetwork correlation anal-

yses, statistical significance was set to p < 0.05, familywise error corrected for

multiple comparisons across three graph metrics, five atrophy patterns, and

three node sets (all, cortical only, and subcortical only; see Table S2 and Fig-

ure 4) for a total of 45 statistical tests. In assessing the relationship between

the shortest functional path to the epicenters and atrophy, we used partial

correlation to further control for the Euclidean distance between each node

and its functionally nearest epicenter. One step further, to take into account

the influence of all network-based metrics, we performed stepwise linear

regression analyses in which atrophy served as the dependent measure, the

three graph metrics served as independent predictors, and cortical versus

subcortical (binary membership) and Euclidean distance between each node

and its functionally nearest epicenter served as nuisance variables (Table

S3). Finally, we repeated the transnetwork correlation and stepwise regression

analyses for all ROIs within the four off-target networks only, i.e., removing the

ROIs in the target network which contributed to epicenter identification (Tables

S4 and S5).
SUPPLEMENTAL INFORMATION
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