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“Resting-state” or task-free fMRI can assess intrinsic connectivity network (ICN) integrity in health and dis-
ease, suggesting a potential for use of these methods as disease-monitoring biomarkers. Numerous analytical
options are available, including model-driven ROI-based correlation analysis and model-free, independent
component analysis (ICA). High test–retest reliability will be a necessary feature of a successful ICN biomark-
er, yet available reliability data remains limited. Here, we examined ICN fMRI test–retest reliability in 24
healthy older subjects scanned roughly one year apart. We focused on the salience network, a disease-
relevant ICN not previously subjected to reliability analysis, as well as the default mode network. Most ICN
analytical methods proved reliable (intraclass coefficients>0.4) and were further improved by wavelet anal-
ysis. Seed-based ROI correlation analysis showed high scan-wise reliability, whereas graph theoretical anal-
ysis and temporal concatenation group ICA proved most reliable at the individual unit-wise level (voxels,
ROIs). Including global signal regression in ROI-based correlation analyses reduced reliability. Our study pro-
vides a direct comparison between the most commonly used ICN fMRI methods and potential guidelines for
measuring intrinsic connectivity in aging control and patient populations over time.

Published by Elsevier Inc.
Introduction

Large-scale distributed neural networks organize healthy brain
function and represent the selective targets of neurodegenerative ill-
ness (Seeley et al., 2009). “Resting-state” or task-free fMRI provides a
new tool for examining intrinsic connectivity network (ICN) integrity
and, potentially, for following networks over time (Achard and
Bullmore, 2007; Damoiseaux et al., 2006; Fox and Raichle, 2007; Fox
et al., 2005; Harrison et al., 2008). Across neuropsychiatric diseases,
more sensitive and reliable longitudinal imaging biomarkers would
increase the efficiency of drug discovery pipelines, most of which
continue to rely on long-term clinical outcome measures. Emerging
data suggest that task-free fMRI represents a promising method
for tracking longitudinal change (Bai et al., 2011; Park et al., 2011),
but rigorous evaluation is needed about the test–retest reliability of
ICN measures.

A few recent studies have examined ICN fMRI reliability in healthy
young subjects (Braun et al., 2011; Schwarz and McGonigle, 2011;
Shehzad et al., 2009; Wang et al., 2011; Zuo et al., 2010). Collectively,
these studies covered diverse analytical strategies, including the
seed-based region-of-interest (ROI) approach, ROI correlationmatrices,
A 94143-1207, USA.
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graph theoretical analyses, and independent component analysis (ICA).
Across these strategies, ICN fMRI showed moderate to good reliability
(intraclass correlation coefficients (ICCs)>0.4) in healthy young adults
re-scanned after one year. Some of these initial studies were conducted
on the same publicly available dataset but examined different ICNs,
making it difficult to compare results across methods and studies. To
support neurodegenerative disease research, ICN fMRI reliability
needs to be established in healthy older individuals, and lingering ques-
tions regarding optimal methods need to be resolved.

Here, we examined test–retest reliability of ICN fMRI in 24 healthy
older adults scanned approximately one year apart. To provide a di-
rect comparison between several related analytical strategies, we fo-
cused primarily on one ICN, the salience network (Seeley et al., 2007,
2009). This network is anchored by anterior cingulate and anterior in-
sular cortices, which feature intrinsic connectivity to each other and
to a host of subcortical, limbic, and autonomic controls sites whose
co-activation may help to represent the emotional significance
(i.e. salience) of ambient conditions (Seeley et al., 2007). This ICN
has been widely replicated in the ICN literature and pertains to sev-
eral neurological and psychiatric illnesses, including frontotem-
poral dementia, autism, and schizophrenia (Seeley et al., 2009;
Uddin and Menon, 2009; White et al., 2010; Wiech et al., 2010;
Zhou et al., 2010), but has not been the subject of previous reliabil-
ity analyses. To enhance the generalizability of the salience network
findings, we further examined reliability of the default mode
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Table 1
Terminology used to describe reliability for each analytical strategy.

Scan-wise Unit-wise

Seed-based ROI connectivity map
(mean of all gray matter voxels' z scores)

Voxel
(z score)

ROI matrix Matrix
(mean of all pairs' z scores)

ROI pair
(z score)

Graph Graph
(mean of each nodes' graph metrics: K/C/B)

ROI node
(graph metric: K/C/B)

ICA ICA component
(mean of all gray matter voxels' z scores)

Voxel
(ICA component z score)

TC-GICA ICA component
(mean of all gray matter voxels' z scores)

Voxel
(ICA component z score)
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network (DMN), a widely studied ICN associated with aging and
Alzheimer's disease (Greicius et al., 2004; Zhou et al., 2010). The
findings provide a valuable guide for ICN analysis in aging
populations.

Materials and methods

Subjects

Subjects were recruited through the Hillblom Healthy Aging Net-
work at the University of California, San Francisco (UCSF) Memory
and Aging Center. A phone screen followed by a comprehensive neu-
ropsychological assessment and a neurological exam was adminis-
tered, and subjects were deemed eligible if they had a Clinical
Dementia Rating (CDR) Scale total score of 0, a Mini Mental State Ex-
amination (MMSE) of 28 or higher, no significant history of neurolog-
ical disease or structural lesion on MRI, and were psychoactive
medication-free. Then, 24 (13 females) subjects were selected based
on age (range 60–80) and the availability of two MRI scans roughly
a year apart, each with a consensus diagnosis of cognitively normal
within 180 days of each scan. Scans for each subject were separated
by an average of 13 (s.d. 3)months. The mean age at the first scan
was 66.7 (s.d. 6.4)years.

Image acquisition

All structural and functional images were acquired at the UCSF
Neuroscience Imaging Center, on a 3 T Siemens Tim Trio scanner
equipped with a 12-channel receiver head coil. A volumetric magne-
tization prepared rapid gradient echo (MP-RAGE) sequence was used
to obtain T1-weighted images of the entire brain (TR/TE/TI=2300/
2.98/900 ms, flip angle of 9°, a bandwidth of 240 Hz/pixel, sagittal ori-
entation with a FOV=256×240 mm and 160 slices, voxel
size=1 mm3). Task-free fMRI scans were obtained using 36 axial
slices (3 mm thick with a gap of 0.6 mm) parallel to the plane con-
necting the anterior and posterior commissures and covering the
whole brain using a T2*-weighted gradient echo–echo planar se-
quence (TR/TE=2000/27 ms, flip angle 80°; FOV=230×230 mm;
matrix size: 92×92; in-plane voxel size: 2.5×2.5 mm). All subjects
underwent 8 min of scanning (240 images) after being instructed
only to remain awake with their eyes closed.

Image processing and analysis

After discarding the first 16 s to allow for magnetic field stabiliza-
tion, functional images were realigned and unwarped, slice-time cor-
rected, co-registered, spatially normalized to standard space and
smoothed with a 4 mm full-width at half-maximum Gaussian kernel
using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Unwarping was per-
formed to reduce artifacts due to movement-by-deformation interac-
tions. Co-registration was performed between the mean T2* images
and the subject's own T1-weighted image, and normalization was
carried out by calculating the warping parameters between the sub-
ject's T1-weighted image and the Montreal Neurological Institute T1
image template and applying them to all functional images in the se-
quence. Subsequently, the functional images were re-sampled at a
voxel size of 2 mm3. These preprocessed images were then used for
seed-based ROI, matrix, graph theoretical, and ICA analyses, as de-
scribed in the following sections.

Motion parameters calculated during realignment were used to
separate the 24 subjects into two subgroups. The maximum head mo-
tion in 3D space for each brain volume was computed as the root-
sum-square of the three parameters for translation (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
)

and rotation (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 þ r22 þ r32

p
) movements, respectively. Group

‘mvmtb3’ included the 20 subjects (mean±s.d. age, 66.0±6.6 years;
11 females) whose maximum head motion was less than 3 mm in
translation and less than 3° in rotation during both scans, and group
‘mvmtb2’ included the 15 subjects (mean±s.d. age, 65.1±5.6 years;
7 females) whosemaximum headmotion was less than 2 mm in trans-
lation and 2° in rotation during both scans. Reliability analyses were
performed separately on ‘all subjects’, ‘mvmtb3’ and ‘mvmtb2’ groups
to assess the effects of motion on the reliability of ICN fMRI measures.
We chose this grouping strategy in part to simulate what a researcher
might do in practice by setting a movement threshold for subject
exclusion.

Test–retest reliability

The reliability of each ICN fMRI measure was quantified by calcu-
lating the intra-class coefficient (ICC) across these measures derived
from the two scans (McGraw, 1996; Shrout and Fleiss, 1979). A
one-way ANOVA was applied to the measures of the two scan
sessions across subjects, to calculate between-subject mean square
(MSp) and mean square error (MSe). ICC values were then cal-
culated as:

ICC ¼ MSp−MSe
MSpþ d−1ð ÞMSe

where d=the number of observations per subject.
This form of the ICC measures the absolute agreement between

the measures of the two different scan sessions and has been used
in previous reliability analyses of fMRI data (Braun et al., 2011;
Schwarz and McGonigle, 2011; Shehzad et al., 2009; Telesford et al.,
2010; Wang et al., 2011; Zuo et al., 2010). For the present study,
test–retest reliability was characterized as excellent (ICC>0.8),
good (ICC 0.6–0.79), moderate (ICC 0.4–0.59), fair (ICC 0.2–0.39) or
poor (ICCb0.2).

ICN fMRI measures

We compared the test–retest reliability of commonly used ICN an-
alytical strategies, including three model-driven approaches, the
seed-based ROI approach, ROI correlation matrix, and graph theoret-
ical analyses, and two model-free approaches, ICA with template-
matching and temporal concatenation group ICA with back recon-
struction (Table 1). To make meaningful comparisons between
methods, we assessed the reliability of these approaches in measur-
ing functional connectivity within the same network — the salience
network, an ICN anchored by bilateral anterior insular and anterior
cingulate cortex with robust connectivity to subcortical and limbic
structures (Seeley et al., 2007). We further assessed the reliability of
seed-based ROI and ICA approaches within the DMN.

Seed-based ROI approaches

Previous studies identified the right frontoinsula as an effective
ROI seed for deriving the salience network (Seeley et al., 2007;
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Sridharan et al., 2008). Since our purpose was to assess reliability of
seed-based ROI approaches more generally, we used four clusters
within the anterior insula as salience network ROI seeds to ensure
that our findings would not be limited to one particular ROI seed.
These four anterior insula clusters were drawn from an activation
likelihood estimate meta-analysis of task-based fMRI studies that ac-
tivated the insula and represent foci related to cognitive and social-
emotional paradigms. The cognitive clusters are located in the dorsal
anterior insula (one per hemisphere), whereas the social-emotional
clusters are positioned in the ventral anterior insula (also one per
hemisphere — for further details, see Kurth et al., 2010).

The four anterior insula clusters were used as seeds in four sepa-
rate seed-based ROI intrinsic connectivity analyses, following previ-
ous methods (Seeley et al., 2007). Briefly, temporal filtering was
performed on each brain voxel using a band-pass filter (0.0083/
sb fb0.15/s) to reduce the effect of low-frequency drift and high-
frequency noise (Lowe et al., 1998). Then, the average voxel-wise
time series from each ROI was detrended and used as a covariate of
interest in a whole-brain, linear regression, statistical parametric
analysis. This procedure generated a statistical parametric map from
each scan session, where each voxel was scored based on its sponta-
neous BOLD signal correlation with the seed ROI used in the analysis
(henceforth referred to as “connectivity”). Additionally, we manipu-
lated several frequently used noise reduction strategies, including re-
gression of white matter, CSF, non-brain (voxels that are not gray
matter, white matter or CSF) and global signal time courses and mo-
tion parameters, to determine the impact of these nuisance regressors
on reliability.

For every ICN derivation approach, we assessed reliability at the
scan-wise and individual unit-wise levels. Specifically for the seed-
based ROI approach, the scan-wise level was defined as the average
connectivity across all gray matter voxels to the seed ROI, whereas
the unit-wise level was defined as the connectivity of each individual
voxel to the seed ROI. Therefore, reliability was calculated from the
baseline and follow-up scans using (1) the mean connectivity score
across all gray matter voxels, generating a single ICC representing
the scan-wise level reliability and (2) the connectivity score of each
gray matter voxel, generating ICCs for all voxels, which were then av-
eraged to produce a single mean ICC representing the unit-wise level
reliability (Table 1).

Previous studies suggest that voxels strongly connected to the ROI
seed show higher reliability (Shehzad et al., 2009). To reassess this
issue, we ranked all gray matter voxels based on their connectivity
strength as determined through group-level analyses. For each of
the four ROI seeds, statistical parametric maps from all scans (24 sub-
jects×2 scans=48 scans) were entered into a second-level, random-
effects analysis (Poline et al., 1997) to generate a group-level connec-
tivity map. Age and gender were included as nuisance regressors. The
values in the resulting group images were used to determine the con-
nectivity strength for each voxel. Voxels within the top 25th percen-
tile for connectivity strength were then used to assess the reliability
of the most strongly connected voxels.

To examine reliability of DMN-related network measures, we in-
vestigated the seed-based ROI approach by creating a 4-mm radius
spherical ROI in left posterior cingulate cortex (MNI coordinates:
−6, −58, 28), the same region and coordinates used to derive
the DMN in a previous reliability study of young adults (Shehzad
et al., 2009).

ROI correlation matrix

A second major ROI-based approach employed in ICN fMRI analy-
ses involves the construction of region-, cluster-, or voxel-level pair-
wise matrices, which represent the connectivity of each “unit” to
every other unit in the matrix. As part of a separate ongoing study,
we used the four connectivity maps derived from the four anterior
insula ROIs described in the previous section to generate a group of
“connectivity clusters”. These four maps were entered into a full-
factorial analysis, to identify brain areas with connectivity only to
the dorsal anterior insula clusters, only to the ventral anterior insula
clusters, or to both cluster pairs. The resulting 68 connectivity clus-
ters, because they represent data-driven, connectivity-based con-
tours, may offer advantages over standard spherical ROIs or
landmark-based parcellation units often used in matrix-based analy-
ses (Shirer et al., 2011). Connectivity was calculated between each
ROI and the other 67 ROIs, generating 2278 unique ROI pair-wise con-
nectivity measures.

As in the seed-based ROI approach, band-pass filtering (0.0083/
sb fb0.15/s) was applied to the BOLD signal time courses for each
voxel during preprocessing. Then, the mean time series from each
ROI was extracted and detrended. Pearson (partial) correlation be-
tween the time series of each ROI pair was computed in Matlab, con-
trolling for one or several of the confounding signals, including white
matter, CSF, non-brain and global signal time courses and motion pa-
rameters. The Pearson correlation coefficients were then converted to
z scores with Fisher's transformation for reliability analysis.

Again, we assessed test–retest reliability of the ROI connectivity
matrix at the scan-wise and individual unit-wise levels. Here, the
scan-wise level was defined as the average connectivity across all
2278 ROI pairs within the matrix, whereas the unit-wise level was de-
fined as the connectivity of each individual ROI pair. Therefore, reli-
ability was calculated from the baseline and follow-up scans using
(1) the mean connectivity score across the matrix of ROI pairs, gener-
ating a single ICC representing the scan-wise level reliability and (2)
the connectivity score of each ROI pair, generating 2278 ICCs, which
were then averaged to produce a single mean ICC representing the
unit-wise level reliability (Table 1).

To test whether ROI pairs with stronger connections were more
reliable, we ranked the matrix ROI pairs based on their connectivity
strength. A group-level connectivity matrix was determined by aver-
aging ROI connectivity matrices from all scans (24 subjects×2
scans=48 scans). The values in the resulting group-level matrix
were used to determine the ROI pairs in the top 25th percentile for
connectivity strength, which were then used to assess the reliability
of the most strongly connected ROI pairs. To visualize the reproduc-
ibility of ROI matrix at the group level, two connectivity matrices
were derived for baseline and follow-up by averaging ROI connectiv-
ity matrices across the baseline and follow-up scans of all subjects
(Fig. 3A).

Wavelet transformation of ROI time series

Wavelet transformation produces a time-scale decomposition that
partitions the total energy of a signal into different scale components,
corresponding to certain frequency ranges (see Bullmore et al., 2004
for a review). Wavelet analysis is particularly well suited to analysis
of signals that have fractal scaling or 1/f properties, as is typical of
fMRI BOLD timeseries at rest (Maxim et al., 2005). Here, we per-
formed wavelet analysis on the 68 salience network ROI clusters
used to construct the ICN matrix described in the previous section,
using the WMTSA Wavelet Toolkit for MATLAB (http://www.atmos.
washington.edu/~wmtsa/). We applied a maximum overlap discrete
wavelet transform (MODWT) with Haar scaling filter to each ROI
timeseries during each scan session to obtain the contributing signal
in the following four frequency components: scale 1 (0.15 to
0.25 Hz), scale 2 (0.08 to 0.15 Hz), scale 3 (0.03 to 0.08 Hz) and
scale 4 (0.01 to 0.03 Hz, Percival and Walden, 2000). In other
words, each ROI timeseries was transformed to four series of wavelet
coefficients at the four scales. Then, Pearson (partial) correlation was
computed between the wavelet coefficients of each ROI pair at each
scale. Thus, each ROI pair's connectivity was measured at each of
the four scales and thus four wavelet correlation matrices were
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generated corresponding to the four scales. Additionally, wavelet co-
efficients of one or several of the confounding signals, including white
matter, CSF, non-brain and global signal time courses and motion pa-
rameters, were removed in the partial correlation analyses. The Pear-
son correlation coefficients were then converted to z scores with
Fisher's transformation for reliability analysis.

Test–retest reliability analysis and group-level analysis were per-
formed on the wavelet correlation matrices in the same manner as
the original ROI matrices, separately at the four scales. Since
wavelet-transformed ROI matrix analysis was most reliable at scale
3, as expected based on the frequency spectrum associated with
ICNs, only the reliability results from scale 3 are presented in the
main text.

Graph theoretical analysis

Graph theoretical analyses were performed using the adjacency
matrices generated from the ROI matrix approach as described in pre-
vious sections, by applying a series of thresholds (from 0 to 1 in incre-
ments of 0.05) to determine the presence of connections between
ROIs. In these adjacency matrices, each of the 68 ROIs represented
one network node, and the connectivity between each pair of ROIs
represented an edge in the network. Both binary and weighted adja-
cency matrices were analyzed for reliability. To generate binary ma-
trices, edges with suprathreshold correlation coefficients were
considered connected and assigned values of 1, whereas edges with
subthreshold coefficients were considered not connected and
assigned values of 0. To generate weighted matrices, each suprathres-
hold edge retained its correlation coefficient as its edge weight,
whereas subthreshold edges below threshold were assigned values
of 0.

The following graph metrics were calculated for each node in the
salience network matrix: degree (K), clustering coefficient (C), and
betweenness centrality (B), using the Brain Connectivity Toolbox
(Rubinov and Sporns, 2010) and matlab_bgl within the Matlab envi-
ronment. Degree measures the connectivity of each node, calculated
as the sum of number/weight of links connected to each node. Clus-
tering coefficient measures local neighborhood connectivity, calculat-
ed as the fraction of a node's neighbors that are neighbors of each
other. Betweenness centrality measures node centrality, calculated
as the fraction of all shortest paths in the network that contain a
given node.

These graph metrics were selected because 1) they assign value to
each individual node, allowing us to determine reliability at both the
scan-wise and unit-wise levels and 2) they can be applied to both
weighted and binary matrices, allowing us to compare reliability be-
tween these matrix types across different thresholds.

We assessed test–retest reliability for each graph metric at the
scan-wise and individual unit-wise levels. Here, the scan-wise level
was defined as the average graph metric across all 68 nodes within
the graph, whereas the unit-wise level was defined as the graph met-
ric for the individual node. Therefore, reliability was calculated from
the baseline and follow-up scans using (1) the mean graph metrics
across the graph, generating a single ICC representing the scan-wise
level reliability and (2) the graph metric of each node, generating
68 ICCs, which were then averaged to produce a single mean ICC
representing the unit-wise level reliability (Table 1).

Independent component analysis (ICA) with template matching

Spatial probabilistic ICA was used to isolate ICN maps following
previous methods (Beckmann and Smith, 2004; Zhou et al., 2010).
Briefly, preprocessed images from each scan were concatenated into
one 4D file and entered into FSL 4.0 Melodic ICA software (http://
www.fmrib.ox.ac.uk/fsl/ index.html). In separate subanalyses, we
allowed the program to determine the number of components for
each data set automatically (estimated component number ranged
from 27 to 70, median 36) or fixed the component number to 20, as
used in a previous study of reliability with this method (Zuo et al.,
2010). Next, we used an automated template matching procedure
to obtain subject-specific best-fit ICN maps for the salience network
(Seeley et al., 2007, 2009). Goodness-of-fit was calculated by compar-
ing each component from each subject to binarized group ICAmaps of
the salience network built from 15 healthy young subjects (ages
19–40; mean age, 26.5 years; nine females, all right-handed) from a
separate dataset (Habas et al., 2009). Within the selected ICA compo-
nent for the salience network, each voxel was given a z-score, which
reflects the degree to which its timeseries correlates with the overall
ICA component timeseries.

For the ICA with template matching approach, we assessed test–
retest reliability at the scan-wise and individual unit-wise levels.
Here, the scan-wise level was defined as the average z-score across
all gray matter voxels within the whole-brain map, whereas the
unit-wise level was defined as the individual voxel's z-score. There-
fore, reliability was calculated from the baseline and follow-up
scans using (1) the mean z-score across all gray matter voxels, gener-
ating a single ICC representing the scan-wise level reliability and (2)
the z-score of each gray matter voxel, generating ICCs for all voxels,
which were then averaged to produce a single mean ICC representing
the unit-level reliability (Table 1).

To assess whether voxels more significantly belonging to the
ICA-derived salience network component had higher reliability, we
ranked all gray matter voxels based on their connectivity (z-
score), as determined from a group-level analysis in which the se-
lected ICA components for each scan were entered into second-
level, random-effects analyses (Poline et al., 1997) to generate the
salience network at the group level (24 subjects×2 scans=48
scans). Age and gender were included as nuisance regressors. The
resulting group images were used to determine the voxels in the
top 25th percentile for connectivity within the ICA-derived salience
network component.

ICA components for DMN were identified using a mirror approach
to that used for the salience network. That is, components were
matched to visually selected templates derived from a separate
dataset (Habas et al., 2009) and analyzed using otherwise identical
methods.

Temporal concatenation group ICA

Temporal concatenation group ICA with back reconstruction (TC-
GICA) was performed using the Group ICA of fMRI Toolbox (GIFT),
implemented in Matlab. Briefly, TC-GICA involves three stages: data
reduction, ICA, and back reconstruction (Calhoun et al., 2004). First,
principal components analysis (PCA) was used to reduce the data di-
mensionality for each subject. After each subject's functional data
were reduced, the data were concatenated and entered into a second
data reduction step using PCA. Second, the reduced, group-
concatenated data were entered into the ICA algorithm to calculate
spatially independent components. The number of components
were either estimated by the program or set to 20, following the pre-
vious reliability study to examine ICA methods (Zuo et al., 2010). The
estimated component number was 32, 31, 31 for all, mvmtb3,
mvmtb2 groups, respectively. Third, back reconstruction was per-
formed using GICA3, which previous studies have suggested may im-
prove accuracy of estimating subject-specific spatial maps and time
courses over the original GICA and spatio-temporal regression
(dual-regression) (Erhardt et al., 2010). The group-level ICA compo-
nents corresponding to salience network and DMN were selected by
visual inspection and confirmed using the same template-matching
procedure employed for individual ICA.

We again assessed test–retest reliability at the scan-wise and unit-
wise levels using each voxel's TC-GICA z-scores, in similar manner as
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described for ICA with template matching (Table 1). Then, to assess
whether voxels that more significantly belonged to the ICA network
showed higher reliability, we ranked all gray matter voxels based
on the group-level significance scores produced by TC-GICA to identi-
fy the voxels in the top 25th percentile of z-scores.

Statistical tests

Statistical tests were carried out in Graphpad Prism 5 (http://
graphpad.com/prism/Prism.htm). To test the significance of nuisance
regressors' impact on scan-wise reliability for the seed-based ROI ap-
proach, paired t-tests (d.f.=2) were used to compare scan-wise ICC
values with and without the given nuisance regressor across the ROI
analyses for each of the four seed ROIs. To test the significance of nui-
sance regressors' impact on unit-wise reliability for the seed-based
ROI approach, paired t-tests were used to compare the mean gray
matter voxel-wise ICC values with and without the given nuisance re-
gressor across the four ROI analyses.
A. 4 ROI seeds and ICN maps

D. Scan-wise reliability

WM/CSF/NB

WM/CSF/NB_Gl

WM/CSF

WM/CSF/NB_mvmt

0.2

0.4

0.6

0.8

+21L
IdAI
rdAI
IvAI
rvAI

IC
C

+14

+21

+5

Fig. 1. ICNs generated by seed-based ROI analysis and their scan-wise reliability. A. The four
yellow; right dorsal AI, rdAI — blue; left ventral AI, lvAI — green; right ventral AI, rvAI — mag
threshold at t>7, cluster size>300 voxels (lower images). B. Distributions of gray matter vo
matter, CSF and non-brain signals were included as nuisance regressors. For visual clarity, d
from the two scans of the same subjects. C. Same as B, except the global signal was included
the same four subjects as in B. D. Mean scan-wise ICC across the four ROI analyses for all sub
each group is indicated in parentheses. Error bars signify s.e.m. across the four ROI analyses.
matter; NB, non-brain; Gl, Global signal; mvmt, movement parameters.
Results

Twenty-four older controls underwent task-free fMRI at two time
points, 300–400 days apart. Salience network intrinsic connectivity
was determined using three model-driven approaches, the seed-based
ROI, ROI correlation matrix, and graph theoretical analyses, and two
model-free approaches, ICAwith template-matching and temporal con-
catenation group ICA with back reconstruction (TC-GICA). Test–retest
reliabilitywas assessed at the scan-wise level, using summarymeasures
of network connectivity fromeach scan session, or at the individual unit
level, using connectivity measures of each individual unit (voxel, node-
pair, or node), whichwere then averaged to reflect reliability across the
individual units of analysis (Table 1).

Seed-based ROI analysis provides good scan-wise reliability

We used four anterior insula ROIs (Kurth et al., 2010) to generate
four intrinsic connectivity maps closely related to the salience
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anterior insular (AI) clusters used as ROI seeds (upper left image; left dorsal AI, ldAI —
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network. These maps showed overlapping ICNs across key network
regions as reported previously, including bilateral anterior insula, an-
terior cingulate cortex, striatum and additional frontal and temporal
areas (Fig. 1A, red color map representing the overlap of the four con-
nectivity maps at the group level).

To assess the scan-wise reliability of salience network connectivi-
ty, we calculated the mean connectivity score across all gray matter
voxels to the four ROI seeds for each scan and used these mean con-
nectivity measures to compute the scan-wise ICC across the two
scans. Using the ROI analysis with the right ventral anterior insula
ROI seed as an example, the distribution of voxel connectivity scores
was right-shifted toward positive values (Fig. 1B). More importantly,
these connectivity distributions varied more between subjects than
they did within subjects and between scans. All four seed-based ROI
analyses showed good reliability (Fig. 1D), with a mean ICC=0.63
(s.e.m.=0.06), suggesting that seed-based ROI approaches were reli-
able at the overall network level.

Subject motion during scanning had a robust and graded impact
on reliability when using the seed-based ROI approach; this effect
was consistent across ROI analyses using all four ROI seeds. Reliability
was higher for scans with less motion — ICC reached nearly 0.8 for
group ‘mvmtb2'compared with 0.6 in the combined group that in-
cluded subjects with greater head motion (Fig. 1D).

Unit-wise reliability of seed-based ROI analysis: improved reliability
among voxels with higher connectivity

Test–retest reliability of the seed-based ROI analyses varied wide-
ly at the voxel level, with a distribution that spanned from poor to
good (Fig. 2A, black). ICC was calculated for each voxel based on its
connectivity to the seed ROI at baseline and follow-up. These unit
(voxel)-wise ICC distributions showed modal values in the fair
range for all four anterior insula seeds, with mean ICCs of 0.3–0.4
(Fig. 2A, black) across the four seeds, when WM, CSF and non-brain
signals were removed as nuisance regressors. Across the four ROI
analyses, roughly 35% of the voxels showed moderate reliability or
better (ICC>0.4).

Voxels with stronger connectivity to the ROI seeds showed greater
reliability. For each of the four ROI seeds, gray matter voxels were
ranked based on connectivity strength. Voxels in the top 25th percen-
tile for connectivity showed ICCs roughly 10% higher than the overall
voxel-wise ICC average (Fig. 2B).

Similar to seed-based ROI scan-wise reliability, subject motion
greatly reduced unit-wise reliability (Fig. 2B).

Effects of global signal and other nuisance regressors on reliability

Including the global signal as a regressor altered the distribution
of functional connectivity computed with the seed-based ROI ap-
proach and had a striking impact on scan-wise and unit-wise reli-
ability. Consistent with previous studies (Braun et al., 2011;
Murphy et al., 2009; Schwarz and McGonigle, 2011), we found
that removing the global signal introduced negative correlations
and reduced positive correlations (compare Figs. 1B,C). Comparing
the distributions of connectivity strength with and without global
signal as a nuisance regressor, including global signal regressor cre-
ated a more symmetric distribution centered at 0 (Fig. 1C). More
importantly, including the global signal significantly reduced both
scan-wise and unit-wise ICCs, by more than 50% (Figs. 1D and 2B;
pb0.0001, paired t test).

Other regressors in the model also significantly influenced reliabil-
ity, yet to a much lesser extent (Figs. 1D and 2B; pb0.05, paired t
test). Seed-based ROI analysis was most reliable when including
WM, CSF and non-brain signal but not the global signal regressors
(Figs. 1D and 2B). On the other hand, although subjects with greater
head movement showed lower reliability, including movement
parameters as nuisance regressors did not significantly improve reli-
ability nor did it mitigate reliability differences seen among groups
with more or less head movement (Fig. 1D, p=0.67; Fig. 2B,
p=0.26; paired t test).

ROI correlation matrix analysis showed moderate scan-wise reliability

While the seed-based ROI approach examines connectivity of each
voxel to a single ROI, ROI correlation matrix analysis allows re-
searchers to explore connectivity between all regions within a net-
work. We evaluated the reliability of an ROI correlation matrix
composed of 68 salience network ROIs, derived from the same four
ROI seeds used in the seed-based ROI analyses. As was seen for the
single seed-based analyses, in ROI matrix analyses, the highest reli-
ability was achieved by including WM, CSF and non-brain signal re-
gressors and omitting the global signal and movement parameters.
Therefore, for simplicity, all subsequent results are described and il-
lustrated with those settings applied.

Overall, scan (matrix)-wise analysis showed moderate-to-good
test–retest reliability. For each ROI pair, we computed the partial cor-
relation coefficient (Pearson's r) between their BOLD signal time
courses (controlling for nuisance covariates). The qualitative stability
of these correlation matrices was evident at the group level, with
baseline and follow-up scans showing convergent group-averaged
matrices (Fig. 3A). The Pearson's r distributions were right-shifted to-
ward positive values (Fig. 3B). Fig. 3B shows these correlation distri-
butions for four representative subjects' baseline and follow-up
scans, which again exhibit greater between-subjects than within-
subjects variance. ROI matrix analysis showed moderate to good
scan-wise reliability (ICC=0.49, Fig. 3C), which is lower than the
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good to nearly excellent scan-wise reliability seen with the seed-
based ROI approach (Fig. 1D).

We assessed unit-wise reliability by calculating ICC for each ROI
pair. This approach revealed a wide ICC distribution across pairs in
the matrix (Fig. 3D, gray). The distributions of unit (pair)-wise ICC
were skewed toward positive values, with mean ICC of 0.2–0.3
(Fig. 3E, left columns). Around 25% ROI pairs had moderate reliability
(ICC>0.4). ROI pairs with stronger connectivity showed greater
reliability. Unit-wise ICCs of the top 25th percentile for connectivity
showed 15% higher ICCs than the overall average (Fig. 3E, left columns).

Wavelet analysis increased ROI matrix reliability

ROI matrix reliability improved substantially when ROI timeseries
correlations were computed after wavelet transformation. We ap-
plied maximal overlap discrete wavelet transform (MODWT) to the
BOLD time courses of the 68 matrix ROIs to extract frequency-
dependent correlation matrices. First, ROI time courses were trans-
formed to wavelet coefficients at four scales, capturing signals within
the corresponding four frequency domains. Then, partial correlation
coefficients were computed between matrix ROIs' wavelet coeffi-
cients to produce four wavelet matrices corresponding to the four fre-
quency domains (see Materials and methods for details). We found
that the salience network matrix was most reliable at scale 3 (0.03
to 0.08 Hz), with 10–20% reduction in ICC measures at other scales,
consistent with previous reports that neural intrinsic connectivity is
represented by low frequency BOLD signal fluctuations (b0.1 Hz).
Since our study focuses on reliability rather than wavelet analysis
per se, only results from wavelet transformation at scale 3 are pre-
sented here.

Scan (matrix)-wise ICC scores were consistently higher after
wavelet transformation across the three levels of subject motion
(Figs. 3C,D). In particular, scan-wise reliability for subjects with
less than 2 mm of motion amplitude was excellent (ICC=0.84;
Fig. 3D). Furthermore, wavelet transformation improved unit
(pair)-wise reliability, improving the ICCs by around 20% across
groups (Fig. 3E).

Graph theoretical measures showed good reliability at the scan-wise and
individual unit-wise levels

We further examined the reliability of graph theoretical mea-
sures calculated from the salience network matrix. To derive graphs
and graph metrics, we hard-thresholded the salience network ROI
correlation matrix (from 0 to 1 in increments of 0.05) to generate
binary and weighted adjacency matrices (see Materials and
methods for details). Each ROI represented a node in the network,
and the connectivity between each ROI pair represented an edge.
Here, we present reliability analysis for weighted and unweighted
degree and clustering coefficient, two of the most common graph
metrics examined in fMRI analyses. Degree and clustering coeffi-
cient were the most reliable and representative in our reliability
analysis (Fig. 4). Betweenness centrality, in contrast, had poor reli-
ability (Supplementary Fig. 1).

We assessed scan-wise reliability by calculating graph-wise ICCs
for each graph metric. We found moderate ICCs for unweighted and
weighted graphs, which were stable (~0.5) across a range of connec-
tivity thresholds from 0.05 to 0.45, although clustering coefficients
showed slightly lower reliability with more stringent matrix thresh-
olding (Fig. 4A). At even higher thresholds (sparser adjacency matri-
ces), ICCs decreased in general, consistent with a recent analysis of
graph metric reliability in young controls (Braun et al., 2011). Alter-
native thresholding methods, such as soft-thresholding and
proportional-thresholding, did not substantially impact reliability.
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Thus, in the following section, we present reliability results from
weighted matrices thresholded at r>0.05.

Unit (node)-wise graph metric reliability proved superior to unit
(voxel or ROI pair)-wise reliability derived from the seed-based ROI
or ROI matrix approaches, with graph metrics showing roughly 30%
higher ICCs (Fig. 4B; compare with Figs. 2B and 3D). Clustering coef-
ficients derived from weighted matrices provided the most reliable
graph metric at the node level, particularly at less stringent hard
thresholds (Fig. 4B, solid red line). As seen for the ROI matrix correla-
tion analyses, reliability of graph metrics was improved by wavelet
transformation of the nodal timeseries. In the low subject motion
group, wavelet transformed matrices (scale 3) produced degree and
clustering coefficient ICCs reflecting good unit-wise reliability
(ICC>0.6, Fig. 4B, right panel).

Temporal concatenation group ICA improved reliability over ICA with
template matching

We further examined reliability of a widely used model-free ICN
fMRI approach, spatial ICA, implemented using the template-
matching approach and the more recently developed temporal con-
catenation group ICA with back reconstruction. With both methods,
each subject's final salience network map consists of voxel-wise z-
scores, which represent the degree to which that voxel belongs to
the overall ICA component.

The template-matching ICA approach showed moderate scan-
wise reliability (ICC~0.4), but poor unit (voxel)-wise reliability,
whether component number was estimated by the software or fixed
to 20 (ICC~0.1, Figs. 5C,D). Although, the group-level salience net-
work maps at baseline and follow-up showed remarkably similar spa-
tial patterns (Fig. 5A, lower panel), examination of the individual
subject-level data revealed that the best-fit components selected
were often dissimilar, as illustrated by one randomly selected subject
(Fig. 5A, upper panel). As a result, unit-wise ICC was low (~0.1,
Fig. 5D). Previous studies suggest that target components can be re-
producibly chosen by trained investigators using visual inspection
(Damoiseaux et al., 2006). We therefore repeated the reliability anal-
ysis on components selected visually, but no improvement in reliabil-
ity was realized, suggesting that the poor reliability of ICA was not
due to template-matching algorithm alone.

Temporal concatenation group ICA with back reconstruction (TC-
GICA) greatly improved both scan-wise and unit-wise reliability
(Figs. 5C,D), consistent with a previous study in young controls
(Zuo et al., 2010). TC-GICA extracted muchmore reliable salience net-
work components than template-matching ICA, particularly when the
component number was fixed to 20. Scan-wise reliability approached
the good range (ICC~0.6) and unit-wise ICC was in the fair range
(ICC~0.3). Furthermore, unit-wise reliability improved by ~60%,
into the moderate range, for voxels within the top 25th percentile
for component z-scores (Fig. 5D). Moreover, ICCs were similar across
the range of subject motion, suggesting that ICA reliability was less
sensitive to movement artifacts compared to other analytical ap-
proaches, perhaps because movement-related noise is separated
from neural signal by the ICA algorithm (Figs. 5C,D).

Test–retest reliability of DMN showed similar properties

Previous test–retest reliability studies of task-free fMRI in healthy
young adults revealed qualitatively similar findings to those pre-
sented here despite examining different ICNs and even whole-brain
connectivity (Braun et al., 2011; Schwarz and McGonigle, 2011;
Shehzad et al., 2009; Telesford et al., 2010; Wang et al., 2011; Zuo
et al., 2010). Nonetheless, to support generalization of the present sa-
lience network findings to other ICNs, we repeated the seed-based
ROI and ICA reliability analyses for the DMN. For the seed-based ROI
approach, including global signal removal produced the lowest
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reliability, whereas reliability was highest when averaged non-brain
signal regressors were included, and subjects with greater head mo-
tion showed lower reliability (Fig. 6A). For the ICA approach, TC-
GICA showed higher reliability than subject-level ICA with
template-matching, although subject-level ICA was more reliable for
deriving the DMN than for deriving the salience network (Figs. 6B
and 5D). Both ROI and ICA approaches showed higher scan-wise reli-
ability than unit-wise reliability (Fig. 6) for the DMN, consistent with
the salience network findings (Figs. 1–5).

Discussion

This study provides a comprehensive investigation of the test–retest
reliability of task-free intrinsic connectivity fMRI in healthy older adults.
We performed a systematic analysis and direct comparison of common-
ly employed ICN analytical strategies and preprocessingmanipulations.
To constrain scope and complement previous studies, we focused on
the salience network, an ICN of broad clinical and neuroscientific rele-
vance for which reliability has not been examined, as well as DMN, in
light of its relevance to aging research and its examination in previous
reliability studies. In general, we found that model-driven methods
based on ROI BOLD signal correlations provided the highest scan-wise
reliability, whereas graph theoretical measures provided the highest
unit-wise reliability. Within the model-free methods, temporal concat-
enation group ICA improved reliability over subject-level ICA approach.
Single summary measures for each subject, derived at the scan-wise
level, showed greater reliability than the averaged reliability calculated
across individual units, such as voxels or ROIs. Inclusion of global signal
regressors and subjects with greater head motion worsened reliability,
whereas inclusion of averaged non-brain signal regressors and wavelet
transformation of functional timeseries improved reliability. Thesefind-
ings provide a foundation for developing ICN fMRI as a longitudinal bio-
marker for diseases of aging.

Reliability of ICN-fMRI in older controls is comparable to younger
controls

In general, our results on long-term test–retest reliability in older
controls are comparable to previous findings in young controls, de-
spite substantial differences in subjects' age and the ICNs examined
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(Table 2, but see below for discussion on Wang et al., 2011). Our find-
ings extend previous work, however, by providing reliability esti-
mates for the same networks on the same subjects using a diverse
array of methods. Furthermore, the salience network and DMN
revealed similar reliability findings, suggesting that our results are
likely to generalize to other ICNs. Accordingly, these data may serve
as a guide for researchers seeking to compare methods for their spe-
cific research purpose.

Effects of global signal and other regressors on reliability

Preprocessing of task-free fMRI data is designed to remove potential
sources of noise, usually by entering nuisance covariates thought to
capture such noise in the general linearmodel. However, there remains
a lack of consensus regarding the optimal choice of covariates. At one
extreme, some studies removed no potentially confounding signals
(Nakamura et al., 2009; van den Heuvel et al., 2008; Wang et al.,
2010), whereas others removed WM, CSF, and global signals along
with time courses of movement parameters (Hayasaka and Laurienti,
2010; Shehzad et al., 2009). Most studies, including our own (Seeley
et al., 2009), have removed some subset of these confounding signals
(Achard and Bullmore, 2007; Liu et al., 2008; Mumford et al., 2010;
Wang et al., 2009). Here, we compared three combinations of nuisance
covariates and found that the highest reliability was achieved by re-
moving WM, CSF and non-brain signals but not the global signal. In-
cluding movement parameters had little impact.

Global signal regression in task-free fMRI has been debated on
other grounds (Birn et al., 2006; Chang and Glover, 2010; Fox et al.,
2009; Murphy et al., 2009; Schölvinck et al., 2010; Vincent et al.,
2006). Arguments in favor of global signal correction emphasize the
value of removing non-neural noise, such as respiration-induced
fluctuations. The procedure, however, markedly shifts the distribu-
tion of correlation among brain voxels, reducing positive correlations
and inducing anti-correlations (Fig. 1C; Murphy et al., 2009; Schwarz
and McGonigle, 2011; Braun et al., 2011). Here, global signal correc-
tion had a profound effect on both scan-wise and unit-wise reliability
of correlation-based analyses (Figs. 1D and 2B), as reported in some
previous analyses (Braun et al., 2011; Schwarz and McGonigle,
2011). This observation may help reconcile discrepant findings in
previous reliability analyses. For example, two studies analyzed the
reliability of graph theoretical analysis on the same whole brain net-
work (based on parcellation units derived from the AAL atlas)
(Schwarz and McGonigle, 2011; Wang et al., 2011), but one study
(Wang et al., 2011) reported much lower ICCs than the other
(Schwarz and McGonigle, 2011) and our study. This discrepancy
could be explained by the removal of global signal in one study
(Wang et al., 2011) but not in the other (Schwarz and McGonigle,
2011). The impact of global signal regression on reliability may reflect
the recentering of each subject's connectivity distribution about a
mean of zero, which diminishes between-subject variance (Figs. 1B,
C), thus lowering ICC. However, two previous studies (Braun et al.,
2011; Schwarz and McGonigle, 2011) reported that global signal re-
moval had less impact or even increased ICCs when applied to some
graph metrics (e.g., global efficiency). They attributed this observa-
tion to the compromised left tail characteristics of the networks
after global signal regression.

Motion-related artifact remains a major concern for ICN fMRI data,
especially in children or aging or diseased subjects who may struggle
to achieve complete stillness during the scan (Power et al., 2011; Van
Dijk et al., 2012). We found that head motion had a major negative
impact on reliability, in particular for analytical strategies based on
correlations between ROIs. The impact of motion was not rescued by



Table 2
Subject demographics and reliability results summarized for the present older control
analyses and for the young controls assessed in previous studies. Reliability results
listed here are those assessed on all subjects in both the present and previous studies.

Dataset UCSF older control NYU young control

Age at 1st scan, yrs (s.d.) 66.7 (6.4) 20.5 (8.4)
Gender, M/F 11/13 11/15
Scan interval, mos (s.d.) 13 (3) 11 (5)
Education, yrs (s.d.) 17.5 (1.8) N.A.

Network evaluated Salience Multiple

Seed-based ROI approach
Scan-wise ICC 0.54–0.68 N.A.
Unit-wise ICC 0.27–0.33 0.13–0.45a,b

ROI matrix analysis
Scan-wise ICC 0.49 0.50c

Unit-wise ICC 0.26 0.22–0.23b

ROI matrix analysis (wavelet)
Scan-wise ICC 0.59 N.A.
Unit-wise ICC 0.32 N.A.

Weighted clustering coefficient
Scan-wise ICC 0.54 ~0.5c,d; ~0.2e

Unit-wise ICC 0.41 ~0.2e

Weighted clustering coefficient (wavelet)
Scan-wise ICC 0.52 N.A.
Unit-wise ICC 0.53 N.A.

TC-GICA
Scan-wise ICC 0.58 N.A.
Unit-wise ICC 0.31 N.A.

0.62f 0.45–0.65f,g

Note: Values listed here are means (except where specified). N.A. = not assessed. ICC
values for older controls were computed with white matter, CSF and non-brain signals
as the nuisance regressors and averaged across all units (voxels, ROI pairs and nodes),
unless noted otherwise.

a Seeded separately at posterior cingulate cortex, supplementary motor area, and the
inferior parietal sulcus and ICC averaged across significant voxels (positive and negative).

b Mutiple networks; White matter, CSF, global signals and movement parameters re-
moved (Shehzad et al., 2009);

c Whole brain network based on ROIs defined by automated anatomical labeling (AAL)
altas. White matter, CSF signals and movement parameters removed (Schwarz and
McGonigle, 2011).

d Whole brain network based on ROIs defined by AAL. White matter, CSF signals and
movement parameters removed (Braun et al., 2011).

e Whole brain network based on ROIs defined by AAL, Harvard-Oxford atlas and meta-
analysis. Global signal and movement parameters removed (Wang et al., 2011).

f Modal ICCs of voxels in the identified components.
g Components associated with sensory, motor, higher order cognitive function and the

default mode network (Zuo et al., 2010).
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including motion parameters as nuisance regressors, consistent with
other studies (Power et al., 2011). In one reliability study of whole
brain connectivity in a young control dataset, the authors found that re-
moving motion signals improved reliability (Schwarz and McGonigle,
2011). These disparate findings could reflect differing magnitudes of
head motion, the different networks investigated, or differences in the
methods used to remove motion signals. In the previous study
(Schwarz andMcGonigle, 2011), motion parameters were deconvolved
from each graymatter voxel during image preprocessing, whereas here
motion parameters were included in the model as regressors.

Our study compared test–retest reliability across task-free fMRI
analytical strategies. Reliability represents just one key methodologi-
cal attribute, however, with validity and sensitivity being the other
important goals that may or may not be enhanced by more reliable
methods. One might question, for example, whether retaining the
global signal inflates reliability by including systematic sources of
physiological noise that persist between scan sessions (Guijt et al.,
2007). Such noise would represent a reproducible but invalid (non-
target) signal. This possibility could be addressed in future studies
that acquire physiological variables (heart rate, respiratory rate and
depth) during fMRI scanning.

Summary ICN measures showed the greatest reliability

For both seed-based ROI and ROI correlation matrix approaches,
scan-wise reliability was considerably higher than unit-wise reliability.
Moreover, graph theoretical measures produced the best unit-wise re-
liability, based onmetrics calculated from individual nodes. Overall, our
results suggest that summarymeasures that reflect network connectiv-
ity as a whole provide the highest reliability, falling within the good to
excellent range. This observation is consistent with reliability studies
on young controls and with studies of test–retest reliability over
shorter (days) intervals (Table 2). For ROI correlation matrices, scan-
wise reliability (Schwarz and McGonigle, 2011) was more than twice
as high as the average unit (ROI pair)-wise reliability. As for short-
term reliability, graph theoretical analysis was reported to have high
reliability in older subjects (ICCs>0.75, Telesford et al., 2010). On the
other hand, even in the young controls, ROI matrix pairs showed only
moderate to good short-term reliability (Schwarz and McGonigle,
2011). These studies differed somewhat, however, in the data prepro-
cessing steps and ICNs analyzed, limiting the inferences that can be
reached through direct comparisons. In addition, (Braun et al., 2011)
found first-order graph metrics (measures directly derived from the
adjacency matrix) generally had lower reliability then second-order
(measures derived from two or more first order metrics).

The greater robustness of scan-wise measures might not be sur-
prising, considering that these measures incorporate a greater body
of the acquired data, but it is encouraging, since single-value (scan-
wise) measures are more attractive as longitudinal biomarkers than
multiple measures (unit-wise) derived for each subject. The chal-
lenge is to identify the most informative (e.g., disease-targeted) net-
work, whose scan-wise measures may capture the biological
phenomenon of interest. On the other hand, a small number of partic-
ular voxels and ROI pairs within the salience network provided higher
unit-wise reliability than the scan-wise measures, suggesting that fu-
ture studies aiming to capture longitudinal change may benefit from
exploring both scan-wise and unit-wise measures.

Reliability of ROI correlation-based methods was improved by wavelet
transformation

ROI correlation matrices and graph metrics have most commonly
been studied using Pearson's correlation between ROIs' BOLD signal
timeseries. Several recent studies, however, have applied wavelet
analysis to generate matrices and graph metrics from the correlations
between ROI-based wavelet coefficients (Achard and Bullmore, 2007;
Achard et al., 2006; Meunier et al., 2009; Supekar et al., 2008). These
studies did not, however, compare the effectiveness of wavelet anal-
ysis to alternative methods directly. The present study provided a
quantitative comparison between ICN fMRI reliability with and with-
out wavelet transformation of the ROI timeseries and found that test–
retest reliability was greatly improved after applying MODWT wavelet
transformation. This observation suggests that wavelet transformation
may constructively augment standard image analysis strategies, espe-
cially for longitudinal studies.

Reliability of subject-level ICA with template matching vs. temporal
concatenation group ICA

In older controls, we replicated a previous study in young controls,
which suggested that temporal concatenation group ICA was more
reliable than standard ICA with template-matching based on individ-
ual subject scans (Zuo et al., 2010). Several studies on age-related dis-
eases, including some of our own, have employed the ICA template-
matching approach, combining components across subjects for
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group-level analysis (Greicius et al., 2004; Mohammadi et al., 2009;
Seeley et al., 2009; Zhou et al., 2010). Although template-matching
ICA approaches may suffice for between-group comparisons, produc-
ing biologically plausible effects, the present data argue against the
use of this method for longitudinal within-subjects ICN analysis, par-
ticularly for ICNs other than the DMN.

The higher reliability provided by TC-GICA is encouraging, yet the
application of this method to diseases of aging requires further vali-
dation. The first step in the method is to concatenate the task-free
fMRI data from all subjects in a study into a single timeseries. While
this approach may be straightforward for examining ICNs in healthy
subjects, it could create problems for disease studies by incorporating
diseased networks into the dataset used to define the components
analyzed. When the goal is to detect deviations of a patient group
from normal, using patients to define components may reduce the
sensitivity of this method. This issue merits further study.

Future directions

ICN fMRI provides a simple, non-invasive, inexpensive technique,
and these characteristics make it an attractive potential diagnostic
or disease-monitoring biomarker. Sensitivity as a diagnostic biomaker
has been explored in several diseases (Fox and Greicius, 2010). Appli-
cation of task-free fMRI as a longitudinal biomarker will require both
reliability and sensitivity to longitudinal change. In other words, the
ideal measures should be not only proven stable over time in the ab-
sence of disease but also highly attuned to longitudinal decline or im-
provement. Ultimately, the best measures will allow detection of
clinical meaningful benefits over short intervals in few subjects; this
goal may require trade-offs between reliability and sensitivity. Future
studies on aging and neurodegenerative populations are needed to
explore the sensitivity of available and new analytical methods to
longitudinal changes.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.neuroimage.2012.03.027.
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