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Fluctuations in resting-state functional connectivity occur but their
behavioral significance remains unclear, largely because correlat-
ing behavioral state with dynamic functional connectivity states
(DCS) engages probes that disrupt the very behavioral state we
seek to observe. Observing spontaneous eyelid closures following
sleep deprivation permits nonintrusive arousal monitoring. During
periods of low arousal dominated by eyelid closures, sliding-window
correlation analysis uncovered a DCS associated with reduced within-
network functional connectivity of default mode and dorsal/ventral
attention networks, as well as reduced anticorrelation between these
networks. Conversely, during periods when participants’ eyelids were
wide open, a second DCS was associated with less decoupling be-
tween the visual network and higher-order cognitive networks that
included dorsal/ventral attention and default mode networks. In
subcortical structures, eyelid closures were associated with in-
creased connectivity between the striatum and thalamus with
the ventral attention network, and greater anticorrelation with
the dorsal attention network. When applied to task-based fMRI
data, these two DCS predicted interindividual differences in fre-
quency of behavioral lapsing and intraindividual temporal fluctu-
ations in response speed. These findings with participants who
underwent a night of total sleep deprivation were replicated in
an independent dataset involving partially sleep-deprived partici-
pants. Fluctuations in functional connectivity thus appear to be
clearly associated with changes in arousal.
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The existence of large-scale functional brain networks is evi-
denced by well-defined spatial patterns of correlated blood-

oxygenation level-dependent (BOLD) signal fluctuation in fMRI
data (1). Recent work has shown that functional connectivity
(FC) within and between brain networks is dynamic, corresponding
to the observation that even while we are performing a task, our
mental focus fluctuates (2). Fluctuation of fMRI-based FC occurs
over tens of seconds (3, 4) and exhibits different patterns across
conscious and unconscious states (5, 6). Furthermore, just as in-
terindividual differences in stationary FC relate to variation in hu-
man behavior and cognition (7–10), it seems likely that recurring
patterns (11) of fluctuating FC have behavioral significance.
Temporal fluctuations in FC can arise from conscious mental

activity (12), episodes of random synchrony (3), or simply time-
varying levels of physiological noise (13, 14). The association
between BOLD signal fluctuation in the default mode network
(DMN) and mind-wandering episodes (15–17) has prompted
investigations into the behavioral correlates of spontaneous
resting-state FC fluctuations (11, 18). Although these fluctua-
tions in FC have been shown to correlate with several physio-
logical markers, such as electroencephalogram (EEG) power,
magnetoencephalography (MEG) power, and heart rate vari-
ability (19–21), their behavioral significance remains unclear.
A key obstacle to elucidating clear FC–behavioral state rela-

tionships is the difficulty in evaluating mental state without the
use of an intrusive stimulus or behavioral probe. For example, in

mind-wandering experiments, the experience sampling technique
used to identify such epochs involves periodically probing (and
interrupting) participants for meta-awareness of mental drifting (22).
To circumvent having to use probes to evaluate mental mi-

crostates, spontaneous eyelid closures (SEC) were used as a proxy
for vigilance state. In sleep-deprived persons, the degree of SEC is
an excellent marker of reduced responsiveness to auditory signals
(23). Pronounced SEC, referring to epochs when the eyelids are
closed or almost completely closed, correspond to periods when
participants are less likely to respond to standardized auditory
stimuli. SEC so robustly foreshadow behavioral lapses that they are
commercially used for drowsiness detection (24, 25).
We recently found that time-locking FC estimation to the

onset of pronounced SEC reveals accentuated forms of the sta-
tionary FC shifts observed in sleep-deprived healthy young adults
compared with when they are well rested (26). These FC changes
involve decreased within-DMN and within-dorsal attention net-
work (DAN) connectivity, as well as reduced anticorrelation
between DMN and DAN (27–30). In the present work, we
sought to demonstrate that spontaneous FC fluctuations in
sleep-deprived persons correspond to fluctuations in arousal that
coincide with pronounced SEC. Motivating this approach are the
twin observations that: (i) psychomotor vigilance in sleep-
deprived persons shows pronounced moment-to-moment fluctu-
ation (31), giving rise to sufficient state variance needed for
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reliable state classification; and (ii) prolonged SEC are more
likely in the sleep-deprived state. We anticipated that sponta-
neous SEC in the sleep-deprived state would be associated with
dynamic FC (DFC) changes in the DMN and DAN, incurring
both within- and between-network shifts. We additionally
expected that such dynamic connectivity patterns correspond-
ing to “low-arousal” SEC epochs would coincide with behav-
ioral lapses during an auditory vigilance task, and that this
could be demonstrated within and across participants. We
tested the reproducibility of our findings with an independent
dataset involving partially sleep-deprived participants. Taken
together, these predictions, if true, would support to the notion
that specific patterns of DFC fluctuation correspond to vari-
ations in arousal level.

Results
Fluctuations in FC at Rest Are Associated with SEC in Sleep-Deprived
Participants. To elucidate the different time-varying patterns of
whole-brain FC, we used a sliding-window approach to compute
windowed covariance matrices from BOLD time courses extracted
from the 126 predefined regions of interest (ROIs) in each partic-
ipant (Fig. 1, step 1; details in Materials and Methods). Each was
computed over a 40-s sliding window, shifted in 2-s increments
(32). To estimate recurring DFC patterns, we performed k-means
clustering on the aforesaid windowed covariance matrices pooled
across all of the participants (Fig. 1, step 2). Each resulting cluster
centroid was taken to be the exemplary FC pattern associated with
each of several dynamic connectivity states (DCS) (Fig. S1, Left).
Each frame in successive time windows was thus assigned with
membership to one of these distinct DCS.
We next correlated the occurrence probability of each DCS

with the SEC score (1, closed; 9, open) at corresponding time
windows (Fig. 1, step 3). The occurrence probability of each DCS
was based on the membership of each window as determined
using k-means clustering at different degrees of SEC. We found
two DCS that were either positively (Fig. 2, Left) (Spearman’s
ρ = 0.905, P = 0.005) or negatively (Fig. 2, Right) (Spearman’s
ρ = −0.970, P < 0.001) associated with SEC scores [P < 0.05
family-wise error rate (FWE) -corrected] (see Table S1 for the
state distribution of these two DCS across subjects). No other
DCS were associated with SEC. A random-effects group-level
analysis showed that this SEC–DCS association was significant in
most subjects (P = 0.028, t = 2.20; mean Spearman’s ρ = 0.372 ±
0.535 and P < 0.001, t = −4.63 and mean Spearman’s ρ = 0.461 ±
0.373 for positive and negative SEC–DCS correlations, re-
spectively). This finding remained robust even with different
numbers of clusters k = 3, 5, and 7 and with different sliding-
window lengths (SI Results and Figs. S2 and S3). Additional
analyses involving a high number of clusters (k = 11 and 13)
showed largely the same results (SI Results and Fig. S4).

High- and Low-Arousal States Exhibit Within-Network and Between-
Network Differences in FC. Having determined how different DCS
relate to eyelid closure (SEC scores), we next characterized how
FC patterns differed between high- and low-arousal DCS. To this
end, we gathered a pair of windowed covariance matrices from
each participant corresponding to the high- and low-arousal
DCS. To minimize the effects of noise and clustering error, only
windows corresponding to DCS identified as “high-“ or “low-“
arousal in more than 50% of the clustering results, and with
different k values, were used. Averaged covariance matrices
for high- and low-arousal DCS were thus obtained (Fig. 3,
Upper, and SI Materials and Methods). Comparison between
the two groups of matrices, using two-sample t tests on Fisher’s
Z-transformed Pearson correlation coefficients, revealed FC
differences between these DCS (P < 1E-6 FWE-corrected)
(Fig. 3, Lower).

Fig. 1. Graphic overview of the study. (Step 1) Task-
free and AVT fMRI scans were collected following
total sleep deprivation. The degree of SEC was rated.
(Step 2) DFC analysis was performed to extract DCS.
(Step 3) DCS corresponding to a high- and low-
arousal state associated with eyelid closure were
derived. (Step 4) DCS derived from the AVT task fMRI
dataset were matched to their counterpart tem-
plates in the task-free condition. (Step 5) High- and
low-arousal DCS thus derived had intersubject and
within-subject behavioral correlates.

Fig. 2. DCS associated with predominantly eyes-open and eyes-closed states
in the task-free condition. FC matrices of the two DCS associated with higher
(eyelids open) and lower (eyelids closed) eye scores. For clearer illustration
here, eye scores are binned into three levels. Spearman’s ρ was computed
with eye scores binned into eight levels (Fig. S8). Cool and hot colors denote
negative and positive correlations respectively. Bars denote the frequency of
occurrence of each DCS at different SEC ratings. Ctr, executive control net-
work; DA, dorsal attention network; DM, default mode network; LB, limbic
system; SC, subcortical regions; SM, somatosensory and motor network;
S/VA, salience/ventral attention network; TP, temporal parietal network; VS,
visual network.
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Compared with the low-arousal DCS, the high-arousal DCS
displayed higher within-network connectivity (Fig. 3, Lower Left
matrix, diagonal cells) involving the DMN, control network,
ventral attention/salience network (SN), and DAN. Higher
between-network connectivity (Fig. 3, Lower Left matrix, off-
diagonal cells) was also observed between the DMN and control
network, between the SN and DAN, and between somatosensory
networks and DAN. High arousal was accompanied by greater
anticorrelation between the DMN (extending to control net-
work) and DAN/SN. In contrast, the low-arousal DCS featured
decoupling (lower correlation) between the visual network and
higher-order cognitive networks, including the DMN, control,
and DAN. Furthermore, in the low-arousal DCS, subcortical
regions, specifically the thalamus and striatum, showed increased
FC with SN and greater anticorrelation with DAN.

DFC States Derived from Task-Based fMRI Resemble Those Derived
from Task-Free fMRI. To examine if DCS derived from task-free
fMRI data could be mapped to low-arousal DCS derived during
task performance, we ran the identical sliding-window analysis
on data collected from the same participants as they performed
an auditory vigilance task after total sleep deprivation (26). An
additional step was taken to regress out task-related activation
from BOLD time courses (Fig. 1, step 4). From the resulting FC
cluster centroids (DCS derived from task-based fMRI data) (Fig.
S1, Right), we found distinct DCSs that closely resembled the
high- and low-arousal DCS derived from the task-free dataset.
The resemblance between task-free and task-based DCS patterns
was stronger in the high-arousal state. The low-arousal DCS
matrices were spatially similar, particularly in on-diagonal ele-
ments. In the off-diagonal elements, differences between the
states were clearer in the task-free data, and could represent an
interaction between task performance and connectivity.

Importantly, high spatial similarity (r > 0.85) between the DCS
was found regardless of the window length (Fig. S3) or the number
of clusters used. We then used the same approach to summarize the
clustering results across different k’s (as described above) to pro-
duce averaged windowed covariance matrices associated with high-
and low-arousal DCS in the task condition (Fig. 4, Left). Similar
within- and between-network FC differences were observed com-
pared with the task-free analysis (Fig. S5).

DCS Predict Interindividual Differences in Behavioral Performance.
We next investigated if arousal-associated DCS could predict
interindividual differences in vigilance performance. To answer
this question, we specified an individual’s auditory vigilance task
(AVT) performance using the proportion of behavioral lapses
across all trials (60 min). An individual’s lapse frequency was
positively correlated with dwell time in the low-arousal DCS (ρ =
0.465, P = 0.022) and negatively correlated with her dwell time in
the high-arousal DCS (ρ = −0.584, P = 0.003) (Fig. 4, Right). The
third DCS, the one identified as neither low- nor high-arousal
DCS, did not significantly correlate with an individual’s AVT task
performance (r = 0.118, P = 0.583). These findings were obtained
using cluster number k = 3, but were also largely replicated using
other k values (values 5, 7, and 9) (SI Results and Fig. S6).

Fluctuations in Dynamic Connectivity and Vigilance Are Linked. In
addition to predicting individual differences in vigilance across
the entire experiment, we wondered whether fluctuations in FC
patterns could inform us about intraindividual fluctuation in
AVT response times. To quantify fluctuations in FC with respect
to the identified high- and low-arousal DCS, we computed the
spatial similarity of each windowed covariance matrix to these

Fig. 3. Distinct patterns of within- and between-network FC in high- and
low-arousal DCS in the task-free condition. (Upper) Averaged FC patterns
associated with high- (Left) and low- (Right) arousal states. (Lower) Matrix of
two-sample t test results related to FC differences between high- and low-
arousal states, thresholded at P < 1E-6 few-corrected (Left). Networks
showing significant FC differences across arousal state are color coded on
the brain surface maps (SI Materials and Methods) (Right). Cent, central; Peri,
peripheral; other abbreviations are as in Fig. 2.

Fig. 4. Occurrence of high and low DCS correlated with individual differences
in AVT task performance. (Left) The high- and low-arousal states derived from
AVT task data exhibited similar patterns as those derived from task-free data
(compare with Fig. 3). (Right) Participants with fewer instances of the high-
arousal state and more occurrences of the low-arousal state had a higher pro-
portion of lapses in relation to total trials. Abbreviations as in Fig. 2.
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states using partial correlation. We used the rank-ordered mean
reaction time of all trials within each successive sliding window to
quantify temporal variation in arousal (Materials and Methods).
For each participant, faster responses corresponded to periods

of greater spatial similarity to the FC pattern associated with
high arousal. Conversely, when there was high spatial similarity
to the FC pattern associated with low arousal, participants either
responded more slowly or not at all (Fig. 5). Across participants,
the correlation between the similarity of DCS expression to ei-
ther high- or low-arousal state, and reaction time was r = −0.325 ±
0.208 (t = −7.60, P < 0.001) for high-arousal state and r = 0.298 ±
0.187 (t = 7.72, P < 0.001) for the low-arousal state. These findings
remained significant after accounting for the number of stimuli
presented in each time window and autocorrelation (SI Results).
Moreover, the correlation between the similarity of DCS expression
to the non-SEC–associated state and reaction time was not signifi-
cant (r = 0.047 ± 0.146, one-sample t tests P = 0.129) (SI Materials
and Methods).

Replication of Key Findings Using an Independent Dataset Involving
Partial Sleep Deprivation. To test the robustness of our findings,
we analyzed another independent dataset of partially sleep-deprived
participants using the identical steps outlined for participants who
underwent a single night of total sleep deprivation. Earlier findings
were replicated at all levels of analyses, including the SEC–DCS
association in the task-free data and the DCS–vigilance relationship
associated with AVT task performance (both interindividual
difference and intraindividual temporal fluctuations) (SI Results,
Replication Study, and Fig. S7).

Discussion
We studied time-varying whole-brain FC under task-free and
task conditions in healthy young adults undergoing a single night
of total sleep deprivation. Using degree of SEC as a proxy for
level of arousal, we identified recurring FC patterns in the task-

free data that conformed to high- and low-arousal DCS, re-
spectively. These states showed systematic differences in FC. The
high-arousal state was associated with greater intranetwork
connectivity involving the DMN, control, and attention net-
works, as well as greater anticorrelation between the DMN and
attention networks. Visual network, striatal, and thalamic con-
nectivity also differed between the two states. The same two DCS
could be identified after regressing out task-related signals associ-
ated with performing an AVT. Critically, we found that high- and
low-arousal DCS could independently predict interindividual dif-
ferences in frequency of behavioral lapsing as well as intraindividual
fluctuation in response speed. Attesting to their robustness, these
findings were replicated using an independent dataset involving
partially sleep-deprived participants.

Linking Fluctuations in FC and Behavioral State.Brain activity during
task-free fMRI experiments does not remain in a stationary
resting state (33, 34). It has been established that spontaneous
fluctuations in intrinsic FC are not simply noise (35) and can be
correlated with physiological markers, such as EEG or MEG
power at different frequency bands (19, 20), as well as with heart
rate variability (21). Shifts in EEG power in the α- and θ-bands
correspond to changes in arousal (36–38). Although these results
are of physiological relevance, they only indirectly link FC fluc-
tuation and behavioral state, require the use of technically de-
manding and expensive simultaneous EEG–fMRI methodology,
and are difficult to deploy for real-time behavioral assessment. In
contrast, monitoring eyelid closure is simple to implement and
predicts an increased likelihood of behavioral lapses (23–25, 39).
As such, SEC provides readily implementable measure to con-
nect FC fluctuation with behavioral state.
We previously showed that prolonged SEC (distinct from

blinks in awake persons) in the sleep-deprived state likely rep-
resent brief sleep intrusions (microsleeps) during which re-
sponses to auditory stimuli are slow or absent. Sensory threshold
elevation during sleep (40) results from reduced transmission of
sensory information to higher cortical areas. Specifically, higher
cortical processing of sensory inputs, necessary for speedy re-
sponses to target stimuli, is attenuated as sleep deepens and
higher cortical areas become progressively more isolated from
brainstem, subcortical, or primary sensory cortical inputs (41).
Sleep deprivation (27–29) and falling asleep (42, 43) have both

been associated with reduced FC within the DMN, as well as
reduced anticorrelation between task-positive networks and the
DMN. These alterations in FC have also been observed during
periods of mind-wandering in the absence of meta-awareness
(33) and during eyes-closed rest compared with eyes-opened rest
(44). It has been proposed that “descent to sleep” is facilitated by
both reduced thalamocortical connectivity at sleep onset (45)
and a breakdown of general connectivity associated with deeper,
slow-wave sleep (30). Both of these processes reduce the brain’s
capacity to integrate information across functional modules (30,
43, 46, 47). Anticorrelation between the DMN and task-positive
networks in particular, is thought to reflect the competitive
balance between internally and externally oriented cognition and
is weakened in conditions of reduced consciousness (48, 49).
Indeed, persons evidencing stronger anticorrelation between the
DMN and attention networks in the well-rested state appear to
be more resilient to sleep deprivation (29).
These observations notwithstanding, the relationship between

FC and behavior remains enigmatic. For example, although on
the average decline in the DMN and DAN FC with sleep dep-
rivation is associated with increased lapsing, the extent to which
stationary FC is altered does not correlate with the frequency of
behavioral lapsing (28, 29).
The current strategy of selecting polar DFC states by con-

straining them with a continuously observable but proxy of be-
havioral state (SEC) allowed us to transcend the limitations of

Fig. 5. Fluctuations in DCS correlated with response-time fluctuations.
(Left) Time courses of AVT reaction time (Top), spatial similarity scores with
the high-arousal DCS (Middle), and low-arousal DCS (Bottom) in a representative
participant. “A” and “B”mark time points of fast AVT performance. Conversely,
“C” and “D” mark time points of slow AVT performance. (Right) Time windows
exhibiting high spatial similarity to the high-arousal DCS were associated with
shorter reaction times. Time windows exhibiting high spatial similarity to the low
DCS were associated with slower responses or lapses.
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using static FC of limited networks to uncover FC and behavior
mappings. The utility of using SEC in the context of fMRI re-
cordings was recently explored in two studies. The first study
documented differences in resting-state fMRI global signal am-
plitude between eyes-open and eyes-closed states to EEG vigi-
lance (50), and the second study documented fMRI BOLD
signal fluctuations to eye-closure and invasive electrophysiolog-
ical recordings in primates (51). Although relevant and but-
tressing the claims made here, these studies did not specifically
address the triune relationship between fMRI DFC, eyelid sta-
tus, and vigilance behavior documented here.

Broader Implications of DCS Identification. A recent meta-analysis
of resting-state FC studies found that when using sophisticated
fMRI signal analysis methods, epochs containing sleep are pre-
sent in up to a third of awake studies (5). Because falling asleep
modulates FC, proper characterization of awake resting-state FC
requires consideration of how frequently such sleep epochs oc-
cur. The present work begs the questions: What if, apart from
voluntary sleep deprivation, a participant has increased dwell
time in the low-arousal state? Would post hoc editing of sleepy
epochs using machine-learning techniques be beneficial or would
it also remove informative connectivity patterns? Patients with
attention-deficit hyperactivity disorder, for example, show in-
creased variance in response times (52) that could be mirrored in
increased dwell time in our low-arousal state.
Whereas the present results show an unequivocal link between

specific DCS and arousal/vigilance, the high dimensionality of
DFC data are such that depending on the behavioral metric used,
different states may be uncovered. As such, it is important to point
out that although we focused specifically on vigilance, pegging a
pattern classifier to other interesting mental states should be fea-
sible, the key challenge being to find a physiological proxy for
mental state of interest that can be observed without interrupting
the natural flow of thought. A particularly fertile ground to explore
would be heterogeneous mind-wandering states (53). Future work
could also lend fresh meaning to the metaphor “changing mental
gears” when speaking of transitions in mental effort.

Conclusion
By using SECs as a proxy, we tracked temporal fluctuations in
behavioral states without relying on potentially disruptive mental
probes. We established a direct association between two patterns
of FC fluctuations and arousal.

Materials and Methods
Participants, Data Acquisition, and Preprocessing. Data from 18 participants (9
males; aged 22 ± 2 y) were included in the analyses. All participants provided
informed consent in compliance with a protocol approved by the National
University of Singapore Institutional Review Board. They were screened for
regular sleeping habits and their sleep patterns were monitored 1 wk before
the scan (SI Materials and Methods). All participants were scanned at
6:00 AM following 1 night of ∼22-h sleep deprivation (Fig. 1, step 1). Each
session comprised two 6-min task-free fMRI runs, once before and once after
six 10-min AVT runs (SI Materials and Methods). An eye-tracking camera
(NordicNeuroLab) was used to monitor spontaneous eyelid closures
throughout the session. fMRI data were preprocessed following our pre-
viously described procedures (54) using the FMRIB Software Library (55) and
the AFNI software (56) (SI Materials and Methods).

Identifying SEC-Associated DFC States at Rest. DFC analyses were performed
based on a predefined set of 126 ROIs, which included 114 cortical regions
derived from an independent analysis of whole-brain functional organization
in a large sample of 1,000 subjects (57) and 12 subcortical structures from the
Automated Anatomical Labeling template (58). The 114 cortical regions
were further grouped into eight intrinsic connectivity networks: the DMN,
control, limbic, visual, somatosensory, temporal-parietal, ventral attention,
and DAN (57).

DFC between the 126 ROIs was estimated using a sliding-window approach
(11). Specifically, tapered time windows were created by convolving a

rectangle (width = 40 s) with a Gaussian window (window α = 6 s). The
covariance matrices of the windowed fMRI data were estimated from a
regularized precision matrix using graphical LASSO methods (59, 60). L1
norm penalties were applied on the precision matrices to promote sparsity
and were the group mean of individually optimized L1 penalties based on
the log-likelihood of unobserved data, as previously described (11). This was
repeated successively along the fMRI time course in steps of 1 repetition
time (TR; 2 s), resulting in 156 windowed covariance matrices per 6-min run.
We also repeated the analyses using 30-, 70-, and 100-s window lengths to
ensure the robustness of our findings.

To derive distinct DCS, a k-means clustering algorithm was applied to
all windowed covariance matrices (18 subjects × 2 runs × 156 windows per
runs = 5,616 windows) using city block distance as the similarity measure. To
reduce redundancy between time windows and to reduce computational
load, we performed subsampling along the temporal dimension to identify
windowed covariance matrices with local maxima in FC variance. This
resulted in a subset of 334 windows that were clustered using k-means. The
optimal number of clusters (k) was determined to be nine based on elbow
criterion, computed as the ratio of within-cluster to between-cluster dis-
tances, after searching a range of k from 2 to 10. Clustering was repeated 10
times with random initialization of starting centroid locations. The resulting
centroids from the subsamples were then used as the starting point for
clustering of all data (5,616 windows) (Fig. 1, step 2). We repeated the same
procedure for different numbers of clusters k = 3, 5, and 7.

To identify SEC-related DCS, we correlated the probabilities of DCS oc-
currence with SEC scores using Spearman’s rank correlation. The same tapered
time window used previously for fMRI data analysis was applied to the time
courses of SEC scores to derive SEC ratings per window. These windowed SEC
scores were subsequently binned into 8 (1-2-8-9) to estimate the probability of
DCS occurrences for each SEC bin (Fig. 1, step 3). The occurrence probability of
each DCS at each SEC bin was estimated as the proportion of time each win-
dowed connectivity matrix was assigned to that DCS cluster.

Deriving High- and Low-Arousal DFC States from Task-Based fMRI and Correlating
These with AVT Performance. The sliding-window analysis and k-means clus-
tering performed on task-based fMRI data followed the same steps as task-
free fMRI data described above. We regressed out task-related activation from
BOLD time courses before sliding-window analysis (SI Materials and Methods).
We used the FC patterns of high- and low-arousal DCS derived from task-free
data as state templates. The DCS obtained from the task condition matched to
these state templates were identified based on a pairwise matching method
using Pearson’s correlation coefficients as the spatial similarity index (Fig. 1,
step 4). We also repeated the template matching procedure using city block
distances between paired matrices.

Individual differences in AVT performance were correlated with probability of
occurrence of the matching task DCS using Spearman’s rank correlation co-
efficient. The proportion of AVT lapses was defined as the ratio between trials of
no response or with reaction time greater than 800 ms (2×mean reaction time)
to the total number of trials administered (Fig. 1, step 5).

Intrasubject moment-to-moment AVT performance was correlated with
the arousal-associated DCS profiles over time. We computed the spatial
similarity of the FC pattern of each window to the patterns in high- and low-
arousal DCS, respectively. To control the shared information between the two
arousal states, partial correlations were used. To characterize the brain–
behavior relationship across all AVT trials, including those with no response,
we first categorized reaction times of all responded trials into 10 ranks (e.g.,
the rank of 1 corresponds to the fastest 10% of trials). Trials with no re-
sponse were assigned the rank of 11. For each participant, the mean rank of
all trials within each window was calculated and then correlated with its
spatial similarity index to high- and low-arousal states using Pearson’s cor-
relation. To test if these brain–behavior relationships were consistent across
all subjects, each individual’s correlation coefficients were Fisher Z-trans-
formed and tested using a one-sample t test.

Replication Analyses Based on Partial Sleep-Deprivation Data. The partial
sleep-deprivation dataset comprised of 17 participants (age = 22.2 ± 1.8, 9
males) was acquired from an independent study (SI Results, Replication
Study). The participant selection criteria and experimental set-up were
similar to the main dataset, except for the following: (i) subjects were re-
stricted to 5 h of nocturnal sleep on the previous night and underwent scans
at 3:00 PM, (ii) the two 6-min task-free fMRI scans were performed back-to-
back at the beginning, and (iii) concurrent EEG data were collected. Both task-
free and task-based imaging data were preprocessed and analyzed using the
same DFC method as those in the total sleep-deprivation dataset.
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