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White matter microstructural 
abnormalities and default network 
degeneration are associated with 
early memory deficit in Alzheimer’s 
disease continuum
Fang Ji1, ofer pasternak2, Kwun Kei Ng1, Joanna su Xian Chong1, siwei Liu1, Liwen Zhang1, 
Hee Youn shim1, Yng Miin Loke1, Boon Yeow tan3, Narayanaswamy Venketasubramanian4, 
Christopher Li-Hsian Chen5,6 & Juan Helen Zhou  1,7

Instead of assuming a constant relationship between brain abnormalities and memory impairment, 
we aimed to examine the stage-dependent contributions of multimodal brain structural and functional 
deterioration to memory impairment in the Alzheimer’s disease (AD) continuum. We assessed grey 
matter volume, white matter (WM) microstructural measures (free-water (FW) and FW-corrected 
fractional anisotropy), and functional connectivity of the default mode network (DMN) in 54 amnestic 
mild cognitive impairment (aMCI) and 46 AD. We employed a novel sparse varying coefficient model 
to investigate how the associations between abnormal brain measures and memory impairment 
varied throughout disease continuum. We found lower functional connectivity in the DMN was related 
to worse memory across AD continuum. Higher widespread white matter FW and lower fractional 
anisotropy in the fornix showed a stronger association with memory impairment in the early aMCI 
stage; such WM-memory associations then decreased with increased dementia severity. Notably, the 
effect of the DMN atrophy occurred in early aMCI stage, while the effect of the medial temporal atrophy 
occurred in the AD stage. Our study provided evidence to support the hypothetical progression models 
underlying memory dysfunction in AD cascade and underscored the importance of FW increases and 
DMN degeneration in early stage of memory deficit.

Alzheimer’s disease (AD) is a gradual progressive neurodegenerative disorder in which memory deficit is typ-
ically the most salient cognitive symptom1. Patients with amnestic mild cognitive impairment (aMCI) are at 
higher risk of developing AD, where aMCI is frequently considered as early stage of AD2,3. Converging evidence 
suggests that both AD and aMCI are associated with large-scale functional network dysconnectivity, especially 
in the default mode network (DMN), which consists of the posterior cingulate cortex (PCC), precuneus, medial 
prefrontal cortex (mPFC), and bilateral angular gyrus4. DMN dysconnectivity is often associated with worsened 
memory4,5. In parallel, grey matter volume (GMV) loss in the medial temporal lobe (MTL) and DMN regions6–8, 
are typically related to memory decline in AD patients9,10. Moreover, diffusion tensor imaging (DTI) studies have 
revealed that compromised white matter (WM) microstructures, particularly in the corpus callosum, cingulum, 
and fornix11, are associated with memory deficit in AD12,13. Recently, free-water (FW) imaging using diffusion 
MRI data was proposed to address the partial volume effect problem14. As a result, FW increases have been 
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associated with extracellular processes such as inflammation and small vascular damage in neurodegenerative 
diseases15. On the other hand, the FW-corrected DTI metrics represent microstructural tissue changes such as 
degeneration and myelin sheath alterations16. However, one critical gap is whether and how these brain structural 
and functional degenerative processes differ in the temporal sequence of their influence on memory performance 
in the AD continuum.

The spectrum of AD spans from clinically asymptomatic to severely impaired17. Based on the hypothet-
ical AD cascade model11,18–21, the influences of abnormal brain imaging measures on memory in AD would 
be more appropriately considered as a multi-facet process moving along a seamless continuum rather than as 
discrete clinical stages1. Recent evidence suggests that pathophysiological abnormalities of AD precede overt 
memory decline and progress in a non-linear manner18,22,23. For example, atrophy rates of MTL and DMN 
regions are not uniform across disease stages and they exhibit differential trajectories24–26. The vascular damage 
and neuroinflammatory-related brain changes also vary with AD continuum11,27,28. However, previous studies 
have mostly associated abnormal brain measures with memory decline in AD patients using linear regression 
models12,29. These models assumed a constant linear relationship between brain measures and cognition over 
stages, which ignored the possibility of varying brain-cognition relationship across the disease spectrum30. Taken 
together, we speculate that the influence of brain abnormities on memory varies according to disease stage. 
However, the significance of these dynamic associations and their potential role in AD continuum have not been 
characterized.

To address this gap, we examined the stage-dependent associations between multimodal brain measures and 
memory decline in AD continuum using a novel sparse varying coefficient (SVC) model31. SVC model allows 
us to use one model to simultaneously compare the trajectories from multiple brain measures32. Furthermore, 
unlike conventional linear models in previous studies4,11,18, SVC model does not assume a constant linear associ-
ation between brain measures and memory performance across stages; instead, it allows the association to vary 
non-linearly with dementia severity. Specifically, based on prior evidence that WM microstructural abnormalities 
and functional network degeneration might occur earlier than the MTL atrophy in AD6,11,19, we hypothesized that 
the influence of WM microstructural abnormalities and DMN functional dysconnectivity on memory impair-
ment would take place in the aMCI stage, while the influence of MTL atrophy would be more prominent later.

Results
Specific brain structural and functional abnormalities are associated with memory deficit. To 
determine regions-of-interests for SVC modelling, we performed several whole-brain voxel-wise analyses on the 
associations between brain abnormalities and memory deficit in patients. The whole-brain voxel-wise analysis 
on the FW-corrected diffusion MRI metrics showed that lower memory scores in aMCI and AD patients were 
associated with higher FW in most WM regions. (Fig. 1A, Supplementary Table 1). In contrast, lower memory 
score was associated with lower fractional anisotropy (FAT) in the body of the fornix only (Fig. 1B, Supplementary 
Table 1).

The voxel-wise analysis on grey matter volume revealed that lower GMV in the bilateral MTL (particularly in 
the HIP), PCC, and mPFC were associated with lower memory scores across all patients (Fig. 2A, Supplementary 
Table 2).

Finally, the voxel-wise analysis on the DMN FC revealed that lower memory score was associated with lower 
FC in the precuneus and part of PCC regions across all patients (Fig. 2B, Supplementary Table 3).

These findings remained significant after controlling for years of education. Further details are provided in 
Supplemental Data (Supplementary Fig. 5, Supplementary Results).

In addition, we found greater brain abnormities (FW, FAT, GMV and FC) in AD patients compared with aMCI 
patients as expected (Supplementary Fig. 2), which included those memory-related brain measures. Further 
details for group difference results among HC, aMCI and AD are provided in Supplemental Data (Supplementary 
Results).

Figure 1. Free-water (FW) increases and tissue compartment fractional anisotropy (FAT) deterioration 
correlated with verbal memory deficit. (A) Whole-brain voxel-wise linear regression analysis indicated that 
higher FW values in widespread brain regions were associated with poorer memory. (B) Lower FAT in the body 
of the fornix was associated with worse memory. The WM skeleton is highlighted in green. All the results are 
threshold-free cluster enhancement and family-wise error-corrected at p < 0.05.
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Differential stage-dependent associations of multimodal brain abnormalities with memory 
performance. To investigate the severity-dependent (CDR- sum of boxes (CDR-SB) to denote dementia 
severity) contributions of both brain functional and structural measurements simultaneously, we built an SVC 
model with memory as the dependent variable and FW, FAT in the fornix, GMV-mPFC, GMV-PCC, GMV-HIP, 
and FC-DMN derived from the significant regions of voxel-wise analysis as predictors.

We found these brain measures exhibited differential severity-dependent associations with memory (Fig. 3). 
For DTI, FW had the greatest influence on memory deficit in the early aMCI phase where higher FW was associ-
ated with lower memory score (peak beta = −0.9). However, this influence gradually decreased in late aMCI and 
AD stage (i.e., less negative betas approaching zero). Similarly, the association of FAT in the fornix with memory 
score was the greatest in early aMCI stage (peak beta = 4.5), where higher FAT was associated with better mem-
ory score. However, this association quickly diminished in the AD stage (i.e., smaller positive betas approaching 
zero).

For GMV, both PCC and mPFC had the strongest associations with memory in the early aMCI stage, where 
larger volume was associated with better memory score (mPFC peak beta = 4.5; PCC peak beta = 1.4). Similar to 
FAT, this relationship gradually diminished in the AD stage (i.e., smaller positive betas). In contrast, the relation-
ship between hippocampus (and MTL) and memory were more evident in the late aMCI stage and peaked at the 
early AD phase (beta = 2.4) where larger volume was associated with better memory (i.e., greater positive betas). 
The association between FC-DMN and memory was evident throughout the disease continuum. Higher FC was 
associated with higher memory score regardless of severity (i.e., comparable positive betas).

We also evaluated the specificity of SVC model following our previous approach32. We randomly permuted the 
memory scores 100 times across the subjects and repeated SVC modelling 100 times on each of the 100 permuted 
data sets (dependent variable: memory z-scores; 10 predictors: brain measures [FW, FAT, FC-DMN, GMV-PCC, 
GMV-mPFC, GMV-HIP] together with nuisance variables [age, gender, handedness and ethnicity]). In 52 out 
of the 100 permuted data sets, no variable was selected by all 100 repetitions. For each of the remaining 48 per-
mutated datasets, the SVC model selected one variable from 10 predictors as the key predictor of verbal memory 
scores based on 100 repetitions. However, the frequency distribution of variable selection across these 48 data 
sets was random. None of the predictors was selected for all 100 repetitions (Supplementary Fig. 3). Overall, the 
selected variables using our original data set did not favour other variables in the null distribution. This indicates 
the high specificity of SVC models built on the original dataset.

Lastly, when the years of education was added into the SVC modelling as a covariate, the estimated 
severity-dependent relationships of all brain regions with memory remained similar as the SVC model without 
education (Supplementary Results and Supplementary Fig. 6).

Discussion
The present study demonstrated differential stage-dependent associations between brain structural/functional 
abnormalities and memory impairment over the course of AD progression using SVC model. Our findings sup-
port the hypothetical model of sequential but temporally overlapping multimodal brain abnormality cascades in 
AD11,18–21. A key advantage of SVC model32 is the use of one multivariant model to compare the stage-varying 
influences of FW increases, fornix degeneration, GM atrophy of MTL and DMN hubs, and DMN dysfunction 
on memory deficit as AD progresses. This model does not require the assumption of constant brain-cognition 
relationships over disease progression; instead, it captures the nonlinear trajectories of these relationships. 
Specifically, lower FAT and higher FW had stronger associations with memory deficit in patients at early aMCI 
stage (in contrast to AD stage). Similarly, atrophy in the DMN (mPFC and PCC) was more strongly associated 
with memory deficit in patients with aMCI. In contrast, GMV loss in the MTL was more strongly associated with 
poor memory in the AD phase. Compared to the stage dependence in the structural measures, an association 
between DMN functional disconnections and memory impairment persisted throughout AD progression. Our 
findings provide new insight into the multifaceted neurobiological mechanisms underlying memory dysfunction 

Figure 2. Grey matter volume (GMV) loss and default mode network (DMN) functional connectivity (FC) 
disruption correlated with memory deficit. (A) Whole-brain voxel-wise linear regression analysis indicated 
that more grey matter atrophy in the hippocampal/parahippocampal (HIP) regions, posterior cingulate cortex 
(PCC), and medial prefrontal cortex (mPFC) was associated with worse memory (p < 0.05, family-wise error-
corrected). (B) Lower FC of the DMN in the precuneus (PreCu)/PCC regions was associated with worse 
memory (height threshold of p < 0.01 and a cluster threshold of p < 0.05, gaussian random field-corrected).
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along the AD continuum and highlight the potential importance of WM microstructural abnormalities and 
DMN degeneration in early cognitive deterioration. Multimodal neuroimaging assays could be further developed 
to track the efficacy of early cognitive intervention strategies.

Figure 3. Severity-dependent associations of free water (FW), tissue compartment fractional anisotropy 
(FAT), grey matter volume (GMV), and functional connectivity (FC) with memory performance derived from 
a sparse varying coefficient model. Solid curves represent the mean associations (Beta coefficients) of brain 
measurements, with memory as a function of dementia severity (represented by the Clinical Dementia Rating 
Scale, sum-of-boxes (CDR-SB)) estimated from 100 replicates. The dashed curves represent the point-wise 2* 
standard errors of the solid curves estimated from 100 replicates. The horizontal dashed black lines represent 
Beta = 0. Abbreviations: HIP: hippocampus, PCC: posterior cingulate cortex, mPFC: medial prefrontal cortex.
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Consistent with the hypothesis that early WM dysfunction appears in the early stage of AD11, our results 
demonstrated that microstructural WM measures were associated with memory performance in the aMCI phase. 
Importantly, by applying the free-water imaging method, we further demonstrated that two different WM patho-
physiological measures were associated with memory deficit in the aMCI stage: higher global FW and focal tissue 
damage in the body of the fornix. Previous studies demonstrated widespread FW increases in AD and aMCI sub-
jects as compared with HC subjects15,33. This water content increase may be due to microvascular degeneration11,34 
and neuroinflammation-related modulation of the blood-brain barrier permeability35 in the widespread WM 
tissues of AD patients. However, the functional significance of such an increase in FW is not well understood. In 
this study, we showed widespread increase in FW was associated with memory deficit, particularly in the aMCI 
stage. This suggests that widespread small vascular degeneration and/or chronic neuroinflammation might play 
important roles in memory deficit during the early stage of AD36. Additionally, we observed a slight ‘bump’ of the 
FW-memory association in the clinical phase (relatively more negative betas at the AD stage in Fig. 3). These two 
phases of stronger FW-memory association during disease progression are in line with outcomes from a recent 
study where both early and late peaks of microglial activation (which triggers inflammation) were involved in 
prodromal and clinical stages of AD27, respectively. Therefore, our results might suggest the potential role of FW 
increases in memory deficit in the early aMCI stage.

Another important finding in our study is that the FAT in the body of the fornix is associated with memory 
deficit. Our SVC model showed that this association peaked at aMCI and then decreased during the AD stage. 
The fornix is a predominant tract connecting the hippocampus to the septal nuclei and the mammillary bod-
ies in the hypothalamus. It is particularly susceptible to pathological assaults and shows early changes in AD37. 
Moreover, the fornix microstructure has been used to classify AD diagnosis and assess cognitive changes and 
response to therapy in both human13 and animal models38. Recent studies have demonstrated that fornix micro-
structure accounts for both age-related and age-independent variations in free recall test39. A prior longitudinal 
study also indicated that FA in the fornix could predict memory decline and progression to AD in MCI patients12. 
Of note, this focal fornix tissue damage had greater association (in term of beta) with memory deficit than the 
global FW increase, which suggests that memory-related WM tract deterioration may play a more dominant role 
than the widespread ‘background’ vascular/inflammatory damage in memory performance decline. Therefore, 
our SVC results further bolstered the plausibility that the fornix may be one of the earliest damaged regions that 
potentially contribute to worse memory outcome in AD.

In contrast to the stronger influence of hippocampal atrophy in AD stage, we found atrophy in the DMN 
hubs (mPFC and PCC) to be more strongly associated with poorer memory performance in the aMCI phase. 
Past studies have reported both MTL atrophy and DMN damage occurs at the early stage of AD6,40. However, the 
stage-dependant contribution of these GM regions to memory deficits remains unknown. Using the multivariant 
SVC model that combined mPFC, PCC and MTL regions, our findings provide evidence that DMN atrophy 
may have greater influence to memory decline at the aMCI stage, while MTL atrophy has greater contribution at 
AD stage. Furthermore, studies have demonstrated that GM atrophy mediates the effects of amyloid and Tau on 
memory41,42. Our results on the differential stage-dependent atrophy-memory association are consistent with the 
pathophysiological mechanisms of AD progression: neuronal degeneration in the DMN related to early amyloid 
burden and hypometabolism and medial temporal atrophy related to later Tau pathology in the clinical stage of 
AD7,18,43. Both hippocampus and DMN hubs functionally support complementary functions in episodic mem-
ory. The hippocampus organizes memories in the context in which they were experienced (a defining feature of 
episodic memory), whereas the DMN hubs control the retrieval of memories by suppressing competing memo-
ries and are responsible for flexibly switching between memory ‘tracks’ according to contextual rules9,44. Indeed, 
interference suppression and retrieval processes have been compromised in healthy elderly and patients with 
aMCI45,46, consistent with the observation of an early stronger GMV-memory association in the DMN than in 
the MTL. Additionally, we observed that mPFC had slightly higher association (in term of beta) with memory 
than the PCC at the early aMCI stage, which was consistent with previous literature that prefrontal cortex plays 
an essential role in the memory processing pathway9.

In contrast to the structural measures, the FC of the DMN hubs showed positive associations with memory 
performance across both prodromal and clinical AD stages. These findings are consistent with prior studies5,19. 
Synaptic dysfunction and grey and white matter deteriorations could impact the functional organization of the 
DMN and lead to memory deficit7,10,47. As a result, the association between PCC-based DMN FC and memory 
remained relatively stable across disease progression.

Overall, our results suggest a possible mechanism of memory deficit in AD. During the early stage of AD, 
the structure and function of the DMN hubs (particularly PCC and mPFC) may be targeted due to selective 
vulnerability48 and/or early amyloid burden43, accompanied by the associated WM deterioration, disconnection 
with hippocampus, and widespread WM inflammation and vascular damage15,35,40. Taken together, these factors 
may impair memory performance. As AD progresses, the impacts of WM damages to memory would be greatly 
reduced due to possible ceiling effects11. Along with this process, MTL atrophy and more severe functional net-
work breakdown become the dominant factors contributing to further memory impairments6,18, supporting the 
hypothetical AD cascade model11,18,19. Therefore, our results implied that extracellular FW increases and DMN 
degeneration may be the potential targets for early intervention strategies to slow down memory decline in AD, 
while MTL atrophy in late AD may be used as an imaging marker to monitor progression of memory deficit18.

Although we have demonstrated the significance of stage-dependent contributions of multimodal brain struc-
tural and functional deterioration to memory impairment in AD progression, our study has limitations. One 
limitation is that the associations between brain function/structure and memory derived from the cross-sectional 
dataset may be confounded by inter-subject anatomical variability and not fully reflect within-subject longitu-
dinal stage-dependent brain-cognition associations. However, our findings are consistent with the AD cascade 
hypothesis and can serve as a working model for future longitudinal studies. Secondly, no amyloid PET imaging 
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or cerebrospinal fluid markers were available for this cohort. Therefore, we could not rule out the possibility of 
other pathologies besides AD in patients with aMCI and AD. Thirdly, although we used global signal regression 
to remove physiological noise, residuals of physiological signals could still remain49,50. Advanced methods such 
as RETROICOR51 making use of concurrent physiological recordings are needed in the future to mitigate the 
influence of physiological noise. Fourthly, there was a relatively limited sample size of participants in those bins 
with severe dementia symptom (CDR-SB > 10), leading to non-uniform CDR-SB distribution (Supplementary 
Fig. 4), which might affect the estimation accuracy in the SVC modelling at the end of the dementia spectrum. 
Future studies on larger sample with longitudinal follow-ups would help characterize finer severity-dependent 
brain-cognition trajectories. Furthermore, the initial screening step of linear regression might miss some brain 
regions whose structural or functional properties influence memory in a non-linear manner, which require com-
plex statistical modelling to infer nonlinear stage-dependent brain-behaviour relationship28. Lastly, compared 
to the current single shell diffusion MRI data, advanced FW correction based on multi-shell data would further 
improve the accuracy of FW separation16.

Conclusion
Based on the sequential but temporally overlapping patterns of brain-memory associations, our study supports 
the hypothetical progression models of multimodality brain integrity related to memory dysfunction in the AD 
continuum. Furthermore, our results underscore the importance of WM microstructure, extracellular water, and 
DMN degeneration in the early stage of the disease, which may guide treatment options to slow down cognitive 
decline.

Methods
Ethics approval and consent to participate. This study was conducted in accordance with the 
Declaration of Helsinki, and written informed consent was obtained from each participant. Ethical approval was 
provided by the National Healthcare Group Domain-Specific Review Board, Singapore.

Participants. All patients were recruited from the National University Hospital of Singapore and St. Luke’s 
Hospital in Singapore15. Trained psychologists assessed each participant with a comprehensive clinical and 
neuropsychological evaluation including the Clinical Dementia Rating Scale (CDR), the Mini-Mental State 
Examination (MMSE), the Montreal Cognitive Assessment, the informant questionnaire on cognitive decline, 
and a formal neuropsychological battery, all of which had been validated for older Singaporeans. The neuropsy-
chological battery assessed seven cognitive domains, two of which were memory domains: verbal (word list recall 
and story recall) and visual (picture recall and Wechsler memory scale-revised visual reproduction) memories52 
(see details in supplementary). Both visual and verbal memory domain scores were combined into a composite 
memory z-score for further analyses.

Both aMCI and AD diagnoses were made at weekly consensus meetings in which clinical features, blood tests, 
psychometrics, and neuroimaging data were reviewed52. Computed tomography (CT), magnetic resonance imag-
ing (MRI), and magnetic resonance angiography were reviewed as part of the diagnostic process. Clinical AD was 
diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders IV criteria (DMS-IV) and the 
National Institute of Neurological and Communicative Disorders and Stroke and the AD and Related Disorders 
Association guidelines for AD52. AD patients had a gradual and slow onset of memory problems, impairment in 
objective neuropsychological assessment, and loss of activities of daily living. All the AD patients had CDR global 
≥1 and CDR sum of box ≥4. Clinical aMCI was diagnosed based on: (i) subjective complaints of memory loss, 
(ii) memory (verbal or visual) impairment on neuropsychological assessment described above, and (iii) absence of 
diagnosed dementia based on the DSM-IV criteria53,54. All the aMCI patients had CDR global <1 and CDR sum 
of box <4. We excluded participants with significant cerebrovascular disease or psychiatric/neurologic disorders55 
(see details in Supplementary). For the healthy controls (HC), we ensured that the participants had no impairment 
in the seven domains, their MMSE scores were greater than or equal to 26, and CDR were equal to 056,57.

Of the 172 eligible HC, aMCI and AD subjects who were selected between August 12, 2010, and June 22, 2016, 
5 participants did not have full MRI scans; 16 participants did not pass quality control criteria for structural MRI, 
resting-state functional MRI, or DTI (see quality control criteria in supplementary); and 5 participants did not 
complete the neuropsychological assessments. The remaining 151 participants (51 HC, 54 aMCI, 46 AD) were 
included in the analyses (Table 1).

Image acquisition. Each subject underwent MRI scanning at the Clinical Imaging Research Centre, National  
University of Singapore (3-T MAGNETOM Trio™, A Tim® System; Siemens, Germany). High-resolution T1-weighted  
structural MRI was performed using a magnetization-prepared rapid gradient echo (MPRAGE) sequence (192 
continuous sagittal slices, repetition time (TR) = 2300 ms, echo time (TE) = 1.9 ms, inversion time = 900 ms, 
flip angle = 9˚, field of view (FOV) = 256 × 256 mm2, matrix = 256 × 256, isotropic voxel size = 1-mm isotropic, 
bandwidth = 240 Hz/pixel). Diffusion MRI scans were acquired using a single-shot fast echo-planar imag-
ing sequence (TR = 6800 ms, TE = 85 ms, slices = 48, FOV = 256 × 256 mm2, voxel size = 3-mm isotropic, b 
value = 1150 s/mm2, 61 diffusion directions, and 7 b0). A 5-minute task-free functional MRI scan was acquired 
using a T2*-weighted echo-planar sequence (TR= 2300 ms, TE = 25 ms, flip angle = 90˚, FOV = 192 × 192 
mm2, voxel size = 3-mm isotropic, and 48 axial slices, with interleaved acquisition). Fluid-attenuated inver-
sion recovery (FLAIR) imaging was also performed (TR = 11,000 ms, TE = 125 ms, inversion time = 2,800 ms, 
FOV = 256 × 256 mm2, sensitivity encoding factor 1.5, voxel size = 1.02 × 1.02 mm2, 60 slices, and slice thick-
ness = 2.5 mm).
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Diffusion MRI data pre-processing. The diffusion MRI data were pre-processed using FSL (http://www.
fmrib.ox.ac.uk/fsl)32. Head movements and eddy current distortions were corrected to the first b = 0 volume via 
affine registration of the diffusion-weighted images. Data were discarded if the maximum displacement relative 
to the first b = 0 volume was greater than 3 mm. The diffusion gradients were rotated to compensate for the regis-
tration. Individual maps were visually inspected for signal dropout, artefacts, and additional motion. Individual 
fractional anisotropy (FA) maps were created by fitting the DTI model to the pre-processed diffusion data at each 
voxel. FA images were non-linearly registered to the high-resolution (1 mm3) FMRIB58 FA image and then skel-
etonized using TBSS for further statistical analysis.

Free-water imaging method. We employed the free-water imaging method on the pre-processed dif-
fusion MRI data to estimate the fractional volume of freely diffusing extracellular water molecules (FW) and 
the fractional anisotropy of water molecules in the proximity of tissue (FAT)14,15. Briefly, the FW compartment 
models water molecules that are free to diffuse and not restricted or hindered during the diffusion process. This 
compartment has a fixed diffusivity of 3 × 10−3 mm2/s (the diffusion coefficient of free-water at body tempera-
ture), and the fractional volume of this compartment in each voxel forms the FW map. The FW-corrected DTI 
compartment models water molecules in the proximity of cellular membranes of brain tissue using a diffusion 
tensor, from which the FAT measure is derived. Therefore, the FW-corrected DTI compartment is corrected for 
contamination with freely diffusing extracellular water and is consequently expected to be more sensitive and 
specific to axonal changes than the measures derived from the single tensor model33. Voxel-wise FW and FAT 
were obtained for each subject16. The aligned FW and FAT maps of each participant were then projected onto the 
standardized FA skeleton, resulting in subject-level skeletonized images.

Voxel-based morphometry. We applied optimized voxel-based morphometry (Computational Anatomy 
Toolbox 12) using Statistical Parametric Mapping (SPM12)55. Briefly, we derived the subject-level GMV prob-
ability maps from the T1 structural images using an approach that included: (1) segmentation of individual 
T1-weighted images into the GM, WM and CSF; (2) creation of a study-specific template using non-linear 
DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra) registration of the 
affine-registered GM and WM segments; (3) registration of each GM/WM probability map to the study-specific 
template in Montreal Neurological Institute (MNI) space; (4) modulation by multiplying the voxel values by the 
Jacobian determinants to account for individual brain volumes; and (5) smoothing of the normalized GM maps 
by a 8-mm isotropic Gaussian kernel.

Functional image pre-processing. Task-free functional MRI images were pre-processed using the 
Analysis of Functional NeuroImages software (https://afni.nimh.nih.gov/) and FSL55. The pre-processing steps 
included: (1) removal of the first five volumes to allow for magnetic field stabilization; (2) motion correction; 
(3) time series de-spiking; (4) spatial smoothing; (5) grand mean scaling; (6) band pass temporal filtering; (7) 
removal of linear and quadratic trends; (8) co-registration of T1 images using boundary-based registration and 
subsequent registration of the functional images into an MNI-152 space using a non-linear registration tool 
(FNIRT); and (9) regression of nine nuisance signals (WM, CSF, global signals and six motion parameters) from 
the pre-processed functional images. To determine whether global signal regression was preferred, we calculated 

Groups HC (n = 51) aMCI (n = 54) AD (n = 46) Overall ANOVA P value

Age 72.0 (4.1) 73.5 (7.9) 75.2 (7.9) p = 0.08

Gender (F/M) 35/16 31/23 31/15 p = 0.42 (χ2)

Handedness (L/R) 3/48 3/51 1/45 p = 0.63 (χ2)

Ethnicity (C/N) 43/8 47/7 38/8 p = 0.82 (χ2)

Education 8.8 (4.6) 6.8 (5.1) 5.0 (4.7)c p = 0.01

MOCA (max = 30) 25.3 (2.7) 19.1 (4.6)c 11.5 (4.9)mc p < 0.001

CDR-global 0 (0) 0.4 (0.2)c 1.2 (0.4)mc p < 0.001

CDR-SB 0 (0) 0.8 (0.8)c 6.7 (2.8)mc p < 0.001

MMSE (max = 30) 28.2 (1.8) 23.7 (4.1)c 16.2 (5.3)mc p < 0.001

Visual construction (max = 32) 20.6 (4.3) 16.4 (4.2)c 10.1 (5.3)mc p < 0.001

Visual motor (max = 100) 34.8 (14.1) 39.7 (24.4) 54.5 (28.2)mc p < 0.001

Attention (max = 12) 8.4 (1.1) 6.9 (1.3)c 4.7 (2.2)mc p < 0.001

Executive functioning (max = 20) 16.9 (1.6) 14.2 (2.6)c 10.2 (3.7)mc p < 0.001

Language (max = 20) 16.8 (2.0) 13.0 (2.2)c 8.7 (3.2)mc p < 0.001

Verbal memory (max = 15) 9.8 (1.5) 4.8 (2.3)c 2.0 (1.3)mc p < 0.001

Visuospatial memory (max = 20) 11.2 (1.8) 6.9 (2.8)c 2.7 (1.8)mc p < 0.001

Table 1. Demographic and neuropsychological features of subjects. The values represent the means (SDs). 
Variables showing group differences (p < 0.05) are in bold. χ2 indicates that the χ2 test was used. Superscript 
letters indicate whether group mean was significantly worse than healthy control (HC) (c), amnestic mild 
cognitive impairment (aMCI) (m) based on post hoc pairwise comparisons (p < 0.05). Abbreviations: F/M: 
female/male; L/R: left/right; C/N: Chinese/non-Chinese; MOCA: Montreal Cognitive Assessment score, 
CDR-SB: Clinical Dementia Rating, sum-of-boxes; MMSE: Mini-Mental State Examination.
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the global negative index for each subject, taken as the percentage of voxels showing a negative correlation with 
the global signal55. Majority of our subjects (90.1%) had the global negative index of <3%, suggesting that the 
global signal was more representative of non-neural noise and should be regressed out from the images.

Functional connectivity analyses. Individual-level DMN functional connectivity maps were obtained 
using a seed-based approach with the REST toolbox58. We created spherical region of interest (ROIs) with a 4-mm 
radius centred at the left posterior cingulate cortex (MNI coordinates [−7, −43, 33]). This seed was previously 
determined as a core region of DMN48,59. Pearson’s correlations were then computed between the time-series of 
every voxel in the brain and the average time series of the seed ROI. The FC correlation maps were converted to 
z-score maps using Fisher’s r-to-z transformation.

Statistical analyses. We analysed the demographic, clinical, and cognitive measures across groups via 
ANOVA or χ2 tests using Statistical Package for Social Sciences (SPSS v. 23.0) software. The results were reported 
at a significance level of p < 0.05.

Associations between brain structure/functional measures and memory impairment. At the first step, to identify 
region-specific WM changes underlying memory deficit in patients, we built voxel-wise general linear models 
(GLMs) with the skeletonized FW and FAT images as the dependent variables separately using the FSL. In each 
model, the memory domain z-score was the independent variable of interest, with age, gender, handedness and 
ethnicity as covariates. Regions were examined for statistical significance using threshold-free cluster enhance-
ment (TFCE) and permutation-based non-parametric testing (FSL Randomise). Results were family-wise error 
(FWE) corrected at p < 0.05.

To examine the association between GMV and memory function among the aMCI and AD patients, we built 
the voxel-wise GLMs using SPM12 toolbox, with a threshold at p < 0.05, FWE corrected. To examine whether and 
how FC within the DMN related to memory performance across the aMCI and AD patients, we built voxel-wise 
GLMs using the REST toolbox58. Analysis was restricted to the DMN based a predefined group-level mask 
derived from an independent group of healthy control subjects55. The results were reported at a height threshold 
of p < 0.01 and a cluster threshold of p < 0.05 with Gaussian random field (GRF) correction58. We then extracted 
the mean values of brain structural/functional measures from the resulting significant regions for further statis-
tical analyses.

Sparse varying coefficient (SVC) modelling of severity-dependent associations between brain measures and memory 
impairment. In reality, the differential pathophysiologies in GM and WM might interact with each other to 
influence with memory in AD18. Furthermore, there are no firm boundaries between the various clinical stages1. 
Therefore, in the second step, we employed the SVC model31,32 to integrate all structural and functional measures 
derived from the previous screening step as predictors in the same model to evaluate their relative contribution 
to and severity-dependent (CDR sum-of-boxes (CDR-SB) as a measure of dementia severity) impact on memory, 
which provides a more comprehensive and nuanced picture. Specifically, we tested whether and how the associ-
ations of brain function/structures with memory were dependent on dementia severity using memory z-scores 
as the dependent variable:

∑β ε= +
=

y t t x t t( ) ( ) ( ) ( ),i k
j

p

j k ij k i k
1

where yi (tk) represents the memory z-scores for subject i(i = 1, 2, …, n) at the dementia severity tk, measured 
by CDR-SB. xij (tk) is the jth (j = 1, 2, …, p) predictor of subject i at CDR-SB tk. βj (tk) is the estimated coefficient 
function depending on CDR-SB tk for each predictor. εi (tk) represents the independent and identically distributed 
random errors at tk.

For predictors xij (tk), we extracted the mean values from the previous identified candidate regions of interest 
(i.e., FW, FAT, FC-DMN, and GMV from mPFC, PCC, hippocampus (HIP)). All predictors were put in the same 
model with age, gender, handedness, and ethnicity included as nuisance variables. Each predictor was stand-
ardized to have zero mean and equal variance across observations. To simultaneously achieve regression model 
fitting and predictor variable selection, we applied the least absolute shrinkage and selection operator (LASSO)60 
to estimate βj (tk) by minimizing the following penalized least squares function.
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where λ is the sparsity penalty tuning parameter chosen by a five-fold cross-validation method. The LASSO 
algorithm performs variable selection by constraining the sum of the squared magnitudes of the coefficients. SVC 
modelling with the LASSO algorithm was specifically designed for feature selection problems with small sample 
sizes31. We approximated each coefficient function βj using linear combinations of the B-spline basis (number of 
basis functions L = 4).

Our SVC model offers several advantages over a traditional linear regression model: (i) it does not assume that 
the association of the brain measures with memory remains constant over disease progression and thus considers 
each beta coefficient (the association of brain function or structure with memory) as a non-linear function of a 
continuous variable of dementia severity (i.e., CDR-SB); (ii) feature selection with the LASSO sparsity penalty 
chooses the most important predictors while eliminating the contributions of the less important predictors; and 
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(iii) rather than analysing brain measures in separate models, all variables are entered as predictors in the same 
multivariate model.

To assess the stability of these beta coefficients, we calculated the means and standard errors of the 
severity-dependent coefficients estimated from 100 replicates. We reported the brain measures that were selected 
in all 100 repetitions of SVC modelling. SVC modelling was performed by in-house R scripts based on Daye and 
colleagues31.

Data Availability
The data that support the findings of this study are available from Memory Ageing and Cognition Centre 
(MACC) but restrictions apply to the availability of these data, which were used under license for the current 
study, and so are not publicly available. Data are however available from the authors upon reasonable request and 
with permission of MACC.
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