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A B S T R A C T

There is significant interest in using resting-state functional connectivity (RSFC) to predict human behavior. Good
behavioral prediction should in theory require RSFC to be sufficiently distinct across participants; if RSFC were
the same across participants, then behavioral prediction would obviously be poor. Therefore, we hypothesize that
removing common resting-state functional magnetic resonance imaging (rs-fMRI) signals that are shared across
participants would improve behavioral prediction. Here, we considered 803 participants from the human con-
nectome project (HCP) with four rs-fMRI runs. We applied the common and orthogonal basis extraction (COBE)
technique to decompose each HCP run into two subspaces: a common (group-level) subspace shared across all
participants and a subject-specific subspace. We found that the first common COBE component of the first HCP
run was localized to the visual cortex and was unique to the run. On the other hand, the second common COBE
component of the first HCP run and the first common COBE component of the remaining HCP runs were highly
similar and localized to regions within the default network, including the posterior cingulate cortex and pre-
cuneus. Overall, this suggests the presence of run-specific (state-specific) effects that were shared across partic-
ipants. By removing the first and second common COBE components from the first HCP run, and the first common
COBE component from the remaining HCP runs, the resulting RSFC improves behavioral prediction by an average
of 11.7% across 58 behavioral measures spanning cognition, emotion and personality.
1. Introduction

Mapping from brain to behavior in individuals is a crucial step in
developing imaging-based biomarkers with real-world utilities. With the
widespread availability of large-scale resting-state functional magnetic
resonance imaging (rs-fMRI) datasets, there has been significant interest
in using resting-state functional connectivity as a predictive fingerprint of
human behavior (Finn et al., 2015; Rosenberg et al., 2016). Resting-state
functional connectivity reflects synchrony between brain regions present
during rest and has been widely utilized to provide insights into the
intrinsic architecture of the human brain (Biswal et al., 1995; Fox and
Raichle, 2007; Buckner et al., 2013). The brain functional architecture
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measured during the resting-state is similar (although not the same)
during task states, suggesting the relevance of resting-state functional
connectivity to brain function and cognition (Smith et al., 2009; Mennes
et al., 2010; Yeo et al., 2015a; Tavor et al., 2016). Consequently,
resting-state functional connectivity has been widely utilized to predict
behavioral measures, ranging from cognition to personality (Hampson
et al., 2006; Smith et al., 2015; Dubois et al., 2018; Bertolero et al., 2018).

Successful behavioral prediction requires functional connectivity to
be distinct across individuals, while retaining key features of an indi-
vidual (Finn and Constable, 2016). For example, if the functional con-
nectivity patterns of all participants were the same, then behavioral
prediction could not possibly work. Therefore, fMRI signals that are
ersity of Singapore, Singapore.
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present (or shared) across participants should theoretically not be useful
for prediction. In fact, the shared signals might confuse the prediction
algorithm, leading to worse prediction performance. Here, we investi-
gated whether removing fMRI signals that are common across individuals
might improve behavioral prediction.

More specifically, we applied the common orthogonal basis extrac-
tion (COBE) algorithm (Zhou et al., 2016a, 2016b) to rs-fMRI data from
the Human Connectome Project (HCP; Van Essen et al., 2012; Smith
et al., 2013). The COBE algorithm was originally developed to project
“multi-block” data (collection of matrices) into a common subspace
shared by all blocks and block-specific subspaces. The number of com-
ponents spanning each subspace is specified by the user. The rs-fMRI data
of an individual could be thought of a block, so application of COBE to
the rs-fMRI of all participants decomposed each participant's fMRI signals
into a linear sum of a number of common COBE components (shared by
all participants) and a number of individual-specific COBE components.
Our hypothesis is that removing the common (group-level) COBE com-
ponents from the rs-fMRI data might yield an improved predictive
fingerprint of human behavior.

Conceptually, it is worth distinguishing our work from the vast
literature investigating trait-level and state-level aspects of functional
connectivity (Shirer et al., 2012; Cole et al., 2014; Krienen et al., 2014;
Mejia et al., 2015; Yeo et al., 2015b; Wang et al., 2016; Gratton et al.,
2018; Greene et al., 2018; Kong et al., 2018). Here, our goal was to
remove rs-fMRI signals common across participants, whichmight include
common state-level effects (e.g., arising from participants undergoing the
same experimental protocol), but also trait-level effects shared across all
participants (e.g., all HCP participants are young adults).

Cognizant of the fact that there might be inter-run variation (state-
level effects) across the four runs of the HCP data (Bijsterbosch et al.,
2017), the COBE algorithm was applied to each HCP run independently
to explore if the common COBE components were similar across runs. We
then evaluated whether functional connectivity computed using the
individual-specific fMRI signals can improve prediction of 58 behavioral
measures across cognition, personality and emotion.

2. Methods

2.1. Overview

COBE was applied to preprocessed rs-fMRI data of 803 subjects from
the Human Connectome project (HCP). Three variants of COBE emerged
and the individual-subspace functional connectivity derived from these
variants were considered for prediction of 58 behavioral measures. Pre-
diction accuracies with and without COBE were assessed.

2.2. Rs-fMRI data

The HCP S1200 release comprises a multi-modal collection of data
across behavioral, structural MRI, rs-fMRI, and MEG paradigms from
healthy adults (Van Essen et al., 2012; Smith et al., 2013). All imaging
data were collected on a custom-made Siemens 3T Skyra scanner using a
multiband sequence. The MRI and behavioral data were collected on two
consecutive days. During the resting-state scan, participants are
instructed to fixate their eyes on a projected bright cross-hair on a dark
background. There were two rs-fMRI sessions. Each rs-fMRI session
consisted of two runs. For convenience, we will refer to the two rs-fMRI
runs (obtained on the first day) as run 1 and run 2. We will refer to the
two rs-fMRI runs (obtained on the second day) as run 3 and run 4. Each
rs-fMRI run was acquired in 2mm isotropic resolution with a TR of 0.72 s
for a total of 1200 frames lasting 14min and 33 s (Van Essen et al., 2012;
Smith et al., 2013).

2.3. Preprocessing

We utilized the MSMAll ICA-FIX data on fs_LR32K surface space (HCP
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S1200 manual; Glasser et al., 2013; Griffanti et al., 2014; Salimi-Khor-
shidi et al., 2014) from 1094 participants. However, some studies have
pointed out that ICA-FIX does not completely eliminate global
head-motion artefacts and recommended further nuisance regression
(Burgess et al., 2016; Siegel et al., 2016; Kong et al., 2018; Li et al., 2019).
More specifically, framewise displacement (FD; Jenkinson et al., 2002)
and root-mean-square of voxel-wise differentiated signal (DVARS)
(Power et al., 2012) were estimated using fsl_motion_outliers. Volumes
with FD> 0.2mm and DVARS >75, as well as uncensored segments of
data lasting fewer than 5 contiguous volumes were flagged as outliers.
Nuisance regression with regressors consisting of a global signal, six
motion parameters, averaged ventricular signal, averaged white matter
signal, and their temporal derivatives (18 regressors in total) were per-
formed. When performing nuisance regression, outlier volumes were
ignored in the computation of the regression coefficients. A bandpass
filter (0.009 Hz� f� 0.08 Hz) was then applied to the data. BOLD runs
with more than half the volumes flagged as outliers were completely
removed. Consequently, 82 subjects had all runs removed and were thus
not considered further.

Preprocessed rs-fMRI time courses were averaged within each of 400
cortical parcels (Schaefer et al., 2017) and 19 subcortical regions (brain
stem, accumbens, amygdala, caudate, cerebellum, diencephalon, hippo-
campus, pallidum, putamen, and thalamus; Fischl et al., 2002). There-
fore, there were 419 regions in total, resulting in a 419� 1200 matrix of
rs-fMRI time courses for each run of each subject.
2.4. Behavioral data

We considered a set of 58 behavioral measures across cognition,
personality and emotion (Table S1; Kong et al., 2018). We restricted our
analyses to participants, who had all four runs survived the quality
control procedure and all 58 behavioral measures, resulting a final set of
803 participants.
2.5. Common orthogonal basis extraction (COBE)

For more details about the COBE algorithm, we refer readers to pre-
viously published papers (Zhou et al., 2016a, 2016b). Here we briefly
describe how COBE was applied to rs-fMRI data in this study.

Given that within-subject differences have been reported across the
four HCP runs (Bijsterbosch et al., 2017), COBE was applied to the four
runs separately. In other words, COBE was applied to the first runs of all
subjects, the second runs of all subjects, the third runs of all subjects and
finally, the fourth runs of all subjects.

For ease of explanation, let us consider the first run of all subjects. As
explained previously, the first run of a subject is represented as a
419� 1200 matrix. Let Sn denote the 419� 1200 rs-fMRI matrix of the
n-th subject. As illustrated in Fig. 1A, COBE seeks to decompose Sn into

Sn ¼ AY
T
n þ bAnbY

T

n ¼ common subspaceþ individual subspace;

where A is a 419 x C matrix representing the common subspace shared
across all subjects. C is the number of components spanning the common
subspace, and is defined a priori by the user. Thus, COBE assumes spatial
correspondence, but not temporal correspondence across subjects.
Indeed, each column of A can be visualized as a spatial map (see Fig. 2 in

Results). YT
n is a C x 1200 matrix of subject-specific time courses (of the

n-th subject) associated with the common space. AYT
n is a 419� 1200

matrix representing the projection of the n-th subject's rs-fMRI time

courses onto the common subspace, while bAn bY
T
n is a 419� 1200 matrix

representing the projection of the n-th subject's rs-fMRI time courses onto

the individual-specific subspace. Fig. 1B illustrates Sn (red), AYT
n (black)

and bAn bY
T
n (green) for a random HCP subject with C¼ 1.



Fig. 1. Illustration of Common Orthogonal Basis
Extraction (COBE). (A) COBE applied to one rs-fMRI
run of 803 HCP participants. COBE projects the rs-
fMRI data (Sn) of an HCP individual onto a common

subspace (AYT
n ) and individual-specific subspace

(bAn bY
T
n Þ. The common subspace (A) is shared across all

subjects. The number of components C spanning the
common subspace (number of columns of A) is a user-
specified parameter. (B) The original signals (red),

common-subspace signals (black; AYT
n ) and

individual-subspace signals (green; bAn bY
T
n ) are shown

for a random HCP subject.
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2.6. Three variants of COBE

An important parameter is the number of common components C. A
useful property of COBE is that if COBE was applied twice (sequentially)
with C¼ 1, the two common components will be (in practice) the same as
the common components obtained by applying COBE once with C¼ 2.
Here, we applied COBE extracting to each of the four HCP runs,
sequentially extracting components up to three components per run,
yielding 4� 3¼ 12 common components.

As will be elaborated in Fig. 2 of the Results section, we found that the
first common component of the first run was unique to the run, while the
second common component of the first run was highly similar to the first
common components of the remaining runs. On the other hand, the third
common component of the first run was also similar to the second
common components of the remaining runs. These results motivated
three variants of COBE for subsequent analyses: (i) COBE-1000, where
COBE was only applied to the first run (C¼ 1) and the common subspace
spanned by the common component was removed from the first run, (ii)
COBE-2111, where COBE was applied to the first run (C¼ 2) and the
remaining runs (C¼ 1), and the common subspace spanned by the
common components were removed from the respective runs, and (iii)
COBE-3222, where COBE was applied to the first run (C¼ 3) and the
remaining runs (C¼ 2), and the common subspace spanned the common
components were removed from the respective runs. Finally, along with
three variants of COBE, we also considered “NO-COBE”, where COBEwas
not utilized at all.
2.7. Behavioral prediction with and without COBE

For each variant of COBE, 419� 419 RSFC (Pearson's correlation)
matrix was computed based on the individual-subspace signals
806
(419� 1200) of each run of each subject. The correlation matrices were
then averaged across all the four runs of each subject. For example, in the
case of the variant COBE-2111, the final correlation matrix of a subject
was computed in the following way: (i) for the first run, the correlation
matrix was computed after two common-subspace components were
removed, (ii) for the remaining runs, the correlation matrices were
computed after one common-subspace component was removed from the
corresponding runs, and (iii) the four correlation matrices were averaged
to obtain the final functional connectivity matrix of a subject. A
419� 419 Pearson's correlation matrix was also computed for the “NO-
COBE” condition.

As previously discussed, we considered 58 behavioral measures
(Table S1, Supplement). For each behavioral measure, the elastic net
(Friedman et al., 2010; Zou and Hastie, 2005) was used to predict sub-
jects’ behavior in a 20-fold nested cross-validation scheme using the
functional connectivity matrices obtained from COBE-1000, COBE-2111,
COBE-3222 or NO-COBE. For every test fold and each behavioral mea-
sure, the remaining 19 folds were used for training and validation. More
specifically, certain behavioral measures are known to correlate with
motion (Siegel et al., 2016). Therefore, age, sex, and framewise
displacement (FD) were regressed from the behavioral measure before
elastic net regression. The nuisance regression was performed on the
training and validation folds, and the estimated coefficients were then
applied to the test fold.

After nuisance regression, the 19 training and validation folds were
used for feature selection by selecting the top 50% of functional con-
nections most strongly correlated (positive or negative) with the partic-
ular behavioral measure (see HCP MegaTrawl; https://db.
humanconnectome.org/megatrawl/HCP820_MegaTrawl_April2016.
pdf). The selected features (functional connectivity strength) were then
entered into the elastic net regression estimation procedure. There were

https://db.humanconnectome.org/megatrawl/HCP820_MegaTrawl_April2016.pdf
https://db.humanconnectome.org/megatrawl/HCP820_MegaTrawl_April2016.pdf
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two hyperparameters associated with the elastic net, which were deter-
mined via inner-loop cross-validation of the 19 folds. The optimal
hyperparameters were then used for predicting the behavioral measure
in the test fold. Accuracy was measured by correlating the predicted and
actual behavioral measure across all subjects within the test fold (Finn
et al., 2015). Thus, for each behavioral measure, the 20-fold
cross-validation yielded 20 prediction accuracies.

When comparing different approaches, the prediction accuracies
were averaged across all behavioral measures and then the corrected
resampled t-test was utilized (Bouckaert and Frank, 2004; Nadeau and
Bengio, 2000). The corrected resampled t-test accounted for the fact that
the cross-validation accuracies were not independent across folds.

3. Results

3.1. Overview

COBE was applied to each rs-fMRI run of 803 HCP subjects. The
spatial maps of the common (group-level) components from the four runs
were then examined. The impact of removing the common components
on the resulting RSFC was then investigated. Finally, we explored
whether removing the common components from the rs-fMRI data
improved behavioral prediction.

3.2. Spatial maps of common COBE components

COBE was applied to the rs-fMRI data of 803 HCP subjects to extract
three components (C¼ 3) that were common across subjects. Common
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components were extracted from the four rs-fMRI runs independently,
yielding a 419 x Cmatrix Ᾱ for each run. Each column of Ᾱ corresponds to
the spatial map of a common COBE component, which is visualized in
Fig. 2.

The first common COBE component of the first run (Fig. 2A) was
predominantly focused on the visual cortex, especially the portion of the
visual cortex involved in peripheral vison. This component was not found
in the remaining runs. Instead, the second common COBE component of
the first run and the first common COBE component of the second, third
and fourth runs were primarily focused on regions within the default
network with particular strong emphasis in the posterior cingulate cortex
and precuneus. Indeed, average correlation between the first component
of the first run with the first component of the remaining runs was only
0.03. On the other hand, the average correlation between the first
component of the first run with the second component of the remaining
runs was 0.83. Overall, this suggests the existence of a “common-sub-
space” component present in the first run of the HCP data, but not present
in the remaining runs.

The third common component of the first run and the second common
COBE component of the second, third and fourth runs were also similar
(r¼ 0.42), with strong weights on the posterior cingulate cortex and
lateral inferior frontal lobe, although the degree of similarity was
considerably weaker than the earlier components (discussed in the pre-
vious paragraph). For example, the somatomotor face region within the
central sulcus exhibited strong spatial weights in the third component of
the first run, but not in the second components of the remaining runs. The
degree of similarity reduced even more with more components (Fig. S1).
More specifically, the average correlation between the fourth component
Fig. 2. Spatial map of three common components
shared across subjects (N¼ 803) in each of the four rs-
fMRI runs. Observe that the first component of the
first run (Fig. 2A) was unique to only that run. Instead,
the second component of the first run and the first
component of the remaining runs were highly similar
(r¼ 0.83). The third component of the first run and
the second component of the remaining runs were
also similar (r¼ 0.42). We note that very similar
components were obtained if the rs-fMRI time courses
were variance normalized before COBE was applied.



Fig. 3. FC changes from removing first COBE
component from the first run of the HCP data. (A) 19
subcortical ROIs (Fischl et al., 2002) (B) 400 cortical
parcels (Schaefer et al., 2017). Parcel colors corre-
spond to 17 large-scale-networks (Yeo et al., 2011).
For visualization, the 17 networks were divided into
eight groups (TempPar, Default, Control, Limbic,
Salience/Ventral Attention, Dorsal Attention, Soma-
tomotor and Visual). (C) 419� 419 FC matrix of the
first run of the HCP data, averaged across 803 par-
ticipants. (D) 419� 419 FC matrix after removing the
first common COBE component from the first HCP
run. (E) FC difference obtained by subtracting (C)
from (D).
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of the first run with the third component of the remaining runs was 0.06.
Therefore, we did not explore more than three components (e.g., COBE-
4333) in subsequent results.

The above observations motivated our considerations of three vari-
ants of COBE: COBE-1000, COBE-2111 and COBE-3222 in subsequent
analyses. To illustrate the notation, COBE-2111 means that two common
components were removed from the first HCP run, while one common
component was removed from the remaining three HCP runs.
3.3. Functional connectivity changes arising from removing common COBE
components

Fig. 3A and B shows the 19 subcortical and 400 cortical ROIs used to
compute the 419� 419 RSFC matrices. To illustrate the effects of
removing common COBE components on the resulting RSFC matrices,
Fig. 3C and D shows the RSFC matrices of the first rs-fMRI run (averaged
across 803 subjects) before and after removing the first common COBE
component. Fig. 3E shows RSFC changes from removing the first com-
mon COBE component. Since the first common COBE component of the
first run was primarily focused on the visual cortex (Fig. 2A), removing
the first common COBE component largely resulted in RSFC changes
associated with the visual network. In particular, there was decreased
808
connectivity within the visual network, decreased connectivity between
visual network regions and the somatomotor and dorsal attention net-
works, as well as increased connectivity between visual network regions
and the control and default networks.

Similarly, FC changes from removing the first common COBE
component from the second, third and fourth rs-fMRI runs are shown in
Fig. 4A–C. Given that the first component was primarily focused on the
posterior cingulate and precuneus (Fig. 2B–D), the resulting RSFC
changes were largely limited to the default network. More specifically,
there was decreased connectivity within the default network, as well as
increased connectivity between the default and attentional networks
(Fig. 4A–C).

Fig. 4D shows FC changes from removing the first two common COBE
components from the first rs-fMRI run. Given that the first component
was associated with the visual cortex, while the second component was
associated with the posterior cingulate and precuneus, the resulting FC
changes involved both visual and default networks. Indeed, the resulting
FC changes appeared to be a combination of Fig. 3E and 4A–C.
3.4. COBE improves behavioral prediction

The 419� 419 FC matrices from NO-COBE, COBE-1000, COBE-2111



Fig. 4. FC changes from removing the first common COBE component from the (A) second run, (B) third run and (C) fourth run of the HCP data. FC changes were
mostly restricted to the default network and its connectivity with other networks. (D) FC changes from removing the first and second common COBE components from
the first rs-fMRI run. FC changes mostly involved the default and visual networks, and their interactions with other networks.

Fig. 5. Cross-validated prediction accuracy (averaged across 58 behavioral
measures) for NO-COBE, COBE-1000, COBE-2111 and COBE-3222. Functional
connectivity was computed using Pearson's correlation. COBE-2111 has the
highest prediction accuracy.
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and COBE-3222 were utilized for cross-validated prediction 58 behav-
ioral measures across cognition, personality and emotion (see Methods).
The 20-fold cross-validation resulted in 20 prediction accuracies for each
behavior measure.

Fig. 5 shows the prediction accuracies averaged across all behavioral
measures. COBE-2111 performed the best with an average prediction
accuracy r¼ 0.179� 0.015 (mean� std). Compared with NO-COBE
(r¼ 0.160� 0.015), COBE-2111 achieves a relative improvement of
11.7% (p< 0.0001). From COBE-2111 to COBE-3222, the prediction
accuracy dropped to r¼ 0.163� 0.015. From COBE-3222 to COBE-4333
(not shown), the prediction accuracy dropped even further to
r¼ 0.143� 0.014, which confirmed our decision not to explore more
components.

Table S1 reports the prediction accuracies for each behavioral mea-
sure averaged across 20 folds. Fig. 6 shows the prediction accuracies of
all 58 behavioral measures for NO-COBE and COBE-2111. COBE-2111
achieved an average relative improvement of 16.5% over NO-COBE
(when relative improvement was computed for each behavioral mea-
sure and averaged across all behavioral measures).

We also repeated the analyses using partial correlations, instead of
Pearson's correlation. COBE-2111 again achieved the best prediction
accuracies (Fig. S2). Compared with NO-COBE, COBE-2111 achieved a
relative improvement of 13.6% (p< 0.0001).



Fig. 6. Cross-validated prediction accuracies (correlation) for NO-COBE and COBE-2111 for 58 behavioral measures across cognition, personality and emotion. Note
the difference in y-axis scales across the three panels. COBE-2111 achieved an average relative improvement of 16.5% over NO-COBE.
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4. Discussion

In this paper, we investigated whether the removal of common rs-
fMRI components (that were shared across participants) could improve
RSFC-based behavioral prediction. To this end, the COBE technique
(Zhou et al., 2016a) was applied to decompose each HCP rs-fMRI run into
a common subspace shared by all participants and individual-specific
subspaces. We found that the first common COBE component from the
first run was unique to that run. On the other hand, the second common
COBE component from the first run was highly similar to the first com-
mon COBE component of the remaining three runs. By removing the first
and second common COBE components from the first HCP run, and the
first common COBE component from the remaining three HCP runs,
behavioral prediction improved by 11.7% (averaged across 58 HCP
behavioral measures).

Resting-state brain activity and functional connectivity are influenced
by a large number of factors (Patriat et al., 2013; Yan et al., 2013; Ron-
dinoni et al., 2011, 2013; Tagliazucchi and Laufs, 2014; Gorgolewski
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et al., 2014; Laumann et al., 2015; Ong et al., 2015; Bijsterbosch et al.,
2017; Power et al., 2017), including experimental conditions (e.g., fix-
ation or eyes open rest, length of scan, etc), environment (e.g., scanner
noise, temperature, etc), physiology (e.g., respiration and heart rate
variability), brain state (e.g., caffeine intake, scanner anxiety, sleepiness)
and content of self-generated thoughts (e.g., imagery, future related, etc).

In the case of the HCP data, Bijsterbosch and colleagues have noted
run-specific (state-specific) differences, whereby early sensory-motor
networks exhibited higher rs-fMRI amplitude in the second run of each
of two scan days, with the first run of the first scan day exhibiting the
lowest rs-fMRI amplitude. Our analyses also revealed run-specific effects:
the first common COBE component of the first rs-fMRI run was unique
and spatially localized in the peripherical portion of the visual cortex.
Given that HCP participants were instructed to fixate on a bright cross-
hair, one might speculate that this might yield strong effects in the vi-
sual cortex in the first run, which dissipated in subsequent runs as par-
ticipants habituated to the “fixation task”.

Once the visual common component unique to the first HCP run was
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removed, the next common COBE component in the first run and the first
common COBE component from the remaining three runs echoed the
default network with particularly strong loadings on the posterior
cingulate and precuneus, and also weak loadings on the inferior frontal
gyrus, lateral temporal cortex, inferior parietal lobe and medial pre-
frontal cortex (Gusnard and Raichle, 2001; Raichle et al., 2001; Buckner
et al., 2008). The default network is involved in self-generated thought
(e.g., autobiographical memory, prospective thinking, etc), which is the
dominant cognitive process during the resting-state (Spreng et al., 2009;
Smallwood, 2013; Andrews-Hanna et al., 2014). Furthermore, the pos-
terior cingulate and precuneus are considered to be one of the core re-
gions of the default network (Andrews-Hanna et al., 2010; Leech and
Sharp, 2013) and plays a pivotal role in mediating the intrinsic activity
throughout the default mode network (Fransson and Marrelec, 2008).
Since the default network supports the generation of self-generated
thoughts during the resting-state, it might not seem surprising that the
default network is one of the common COBE component. However,
inter-individual variation in the nature and content of self-generated
thoughts can influence the resulting patterns of brain activity during
rest (Gorgolewski et al., 2014; Wang et al., 2018). Therefore, it is
somewhat surprising that the default network is one of the common
COBE components that is shared across participants.

In the original COBE paper (Zhou et al., 2016a), COBE was shown to
be useful in multiple datasets. For example, COBE was applied to 2856
face images from 68 individuals taken under different conditions (e.g.,
pose, illumination) to extract two common COBE components. By visual
inspection, the common COBE components appeared to reflect illumi-
nation direction. Since illumination direction was not useful for face
recognition, removing the common components improved recognition
accuracies. Similarly, the common COBE components estimated in this
study (Fig. 2) might represent components not important for prediction,
so their removal improved behavioral prediction. However, unlike face
images (Zhou et al., 2016a), inferring the biological meaning of the
components is tricky. While the common COBE components appeared
biologically plausible (e.g., mapping to visual or default network re-
gions), the actual biological mechanisms remain unclear and is a topic for
future work.

5. Conclusions

In this work, we decomposed participants’ rs-fMRI data into two
components: a common (group-level) subspace and individual-specific
subspaces. We found run-specific (state-specific) effects that were
shared across participants. When common rs-fMRI signals were removed,
the resulting RSFC yielded improved behavioral prediction in the Human
Connectome Project.
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